2021
pdf
bib
abs
Monotonic Simultaneous Translation with Chunk-wise Reordering and Refinement
HyoJung Han
|
Seokchan Ahn
|
Yoonjung Choi
|
Insoo Chung
|
Sangha Kim
|
Kyunghyun Cho
Proceedings of the Sixth Conference on Machine Translation
Recent work in simultaneous machine translation is often trained with conventional full sentence translation corpora, leading to either excessive latency or necessity to anticipate as-yet-unarrived words, when dealing with a language pair whose word orders significantly differ. This is unlike human simultaneous interpreters who produce largely monotonic translations at the expense of the grammaticality of a sentence being translated. In this paper, we thus propose an algorithm to reorder and refine the target side of a full sentence translation corpus, so that the words/phrases between the source and target sentences are aligned largely monotonically, using word alignment and non-autoregressive neural machine translation. We then train a widely used wait-k simultaneous translation model on this reordered-and-refined corpus. The proposed approach improves BLEU scores and resulting translations exhibit enhanced monotonicity with source sentences.
2020
pdf
bib
abs
An Iterative Knowledge Transfer NMT System for WMT20 News Translation Task
Jiwan Kim
|
Soyoon Park
|
Sangha Kim
|
Yoonjung Choi
Proceedings of the Fifth Conference on Machine Translation
This paper describes our submission to the WMT20 news translation shared task in English to Japanese direction. Our main approach is based on transferring knowledge of domain and linguistic characteristics by pre-training the encoder-decoder model with large amount of in-domain monolingual data through unsupervised and supervised prediction task. We then fine-tune the model with parallel data and in-domain synthetic data, generated with iterative back-translation. For additional gain, we generate final results with an ensemble model and re-rank them with averaged models and language models. Through these methods, we achieve +5.42 BLEU score compare to the baseline model.
pdf
bib
abs
Extremely Low Bit Transformer Quantization for On-Device Neural Machine Translation
Insoo Chung
|
Byeongwook Kim
|
Yoonjung Choi
|
Se Jung Kwon
|
Yongkweon Jeon
|
Baeseong Park
|
Sangha Kim
|
Dongsoo Lee
Findings of the Association for Computational Linguistics: EMNLP 2020
The deployment of widely used Transformer architecture is challenging because of heavy computation load and memory overhead during inference, especially when the target device is limited in computational resources such as mobile or edge devices. Quantization is an effective technique to address such challenges. Our analysis shows that for a given number of quantization bits, each block of Transformer contributes to translation quality and inference computations in different manners. Moreover, even inside an embedding block, each word presents vastly different contributions. Correspondingly, we propose a mixed precision quantization strategy to represent Transformer weights by an extremely low number of bits (e.g., under 3 bits). For example, for each word in an embedding block, we assign different quantization bits based on statistical property. Our quantized Transformer model achieves 11.8× smaller model size than the baseline model, with less than -0.5 BLEU. We achieve 8.3× reduction in run-time memory footprints and 3.5× speed up (Galaxy N10+) such that our proposed compression strategy enables efficient implementation for on-device NMT.
pdf
bib
abs
End-to-End Simultaneous Translation System for IWSLT2020 Using Modality Agnostic Meta-Learning
Hou Jeung Han
|
Mohd Abbas Zaidi
|
Sathish Reddy Indurthi
|
Nikhil Kumar Lakumarapu
|
Beomseok Lee
|
Sangha Kim
Proceedings of the 17th International Conference on Spoken Language Translation
In this paper, we describe end-to-end simultaneous speech-to-text and text-to-text translation systems submitted to IWSLT2020 online translation challenge. The systems are built by adding wait-k and meta-learning approaches to the Transformer architecture. The systems are evaluated on different latency regimes. The simultaneous text-to-text translation achieved a BLEU score of 26.38 compared to the competition baseline score of 14.17 on the low latency regime (Average latency ≤ 3). The simultaneous speech-to-text system improves the BLEU score by 7.7 points over the competition baseline for the low latency regime (Average Latency ≤ 1000).
pdf
bib
abs
End-to-End Offline Speech Translation System for IWSLT 2020 using Modality Agnostic Meta-Learning
Nikhil Kumar Lakumarapu
|
Beomseok Lee
|
Sathish Reddy Indurthi
|
Hou Jeung Han
|
Mohd Abbas Zaidi
|
Sangha Kim
Proceedings of the 17th International Conference on Spoken Language Translation
In this paper, we describe the system submitted to the IWSLT 2020 Offline Speech Translation Task. We adopt the Transformer architecture coupled with the meta-learning approach to build our end-to-end Speech-to-Text Translation (ST) system. Our meta-learning approach tackles the data scarcity of the ST task by leveraging the data available from Automatic Speech Recognition (ASR) and Machine Translation (MT) tasks. The meta-learning approach combined with synthetic data augmentation techniques improves the model performance significantly and achieves BLEU scores of 24.58, 27.51, and 27.61 on IWSLT test 2015, MuST-C test, and Europarl-ST test sets respectively.
2019
pdf
bib
abs
Look Harder: A Neural Machine Translation Model with Hard Attention
Sathish Reddy Indurthi
|
Insoo Chung
|
Sangha Kim
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
Soft-attention based Neural Machine Translation (NMT) models have achieved promising results on several translation tasks. These models attend all the words in the source sequence for each target token, which makes them ineffective for long sequence translation. In this work, we propose a hard-attention based NMT model which selects a subset of source tokens for each target token to effectively handle long sequence translation. Due to the discrete nature of the hard-attention mechanism, we design a reinforcement learning algorithm coupled with reward shaping strategy to efficiently train it. Experimental results show that the proposed model performs better on long sequences and thereby achieves significant BLEU score improvement on English-German (EN-DE) and English-French (ENFR) translation tasks compared to the soft attention based NMT.