Ronan Le Bras


2021

pdf bib
proScript: Partially Ordered Scripts Generation
Keisuke Sakaguchi | Chandra Bhagavatula | Ronan Le Bras | Niket Tandon | Peter Clark | Yejin Choi
Findings of the Association for Computational Linguistics: EMNLP 2021

Scripts – prototypical event sequences describing everyday activities – have been shown to help understand narratives by providing expectations, resolving ambiguity, and filling in unstated information. However, to date they have proved hard to author or extract from text. In this work, we demonstrate for the first time that pre-trained neural language models can be finetuned to generate high-quality scripts, at varying levels of granularity, for a wide range of everyday scenarios (e.g., bake a cake). To do this, we collect a large (6.4k) crowdsourced partially ordered scripts (named proScript), that is substantially larger than prior datasets, and develop models that generate scripts by combining language generation and graph structure prediction. We define two complementary tasks: (i) edge prediction: given a scenario and unordered events, organize the events into a valid (possibly partial-order) script, and (ii) script generation: given only a scenario, generate events and organize them into a (possibly partial-order) script. Our experiments show that our models perform well (e.g., F1=75.7 on task (i)), illustrating a new approach to overcoming previous barriers to script collection. We also show that there is still significant room for improvement toward human level performance. Together, our tasks, dataset, and models offer a new research direction for learning script knowledge.

pdf bib
NeuroLogic Decoding: (Un)supervised Neural Text Generation with Predicate Logic Constraints
Ximing Lu | Peter West | Rowan Zellers | Ronan Le Bras | Chandra Bhagavatula | Yejin Choi
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Conditional text generation often requires lexical constraints, i.e., which words should or shouldn’t be included in the output text. While the dominant recipe for conditional text generation has been large-scale pretrained language models that are finetuned on the task-specific training data, such models do not learn to follow the underlying constraints reliably, even when supervised with large amounts of task-specific examples. We propose NeuroLogic Decoding, a simple yet effective algorithm that enables neural language models – supervised or not – to generate fluent text while satisfying complex lexical constraints. Our approach is powerful yet efficient. It handles any set of lexical constraints that is expressible under predicate logic, while its asymptotic runtime is equivalent to conventional beam search. Empirical results on four benchmarks show that NeuroLogic Decoding outperforms previous approaches, including algorithms that handle a subset of our constraints. Moreover, we find that unsupervised models with NeuroLogic Decoding often outperform supervised models with conventional decoding, even when the latter is based on considerably larger networks. Our results suggest the limit of large-scale neural networks for fine-grained controllable generation and the promise of inference-time algorithms.

pdf bib
Moral Stories: Situated Reasoning about Norms, Intents, Actions, and their Consequences
Denis Emelin | Ronan Le Bras | Jena D. Hwang | Maxwell Forbes | Yejin Choi
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

In social settings, much of human behavior is governed by unspoken rules of conduct rooted in societal norms. For artificial systems to be fully integrated into social environments, adherence to such norms is a central prerequisite. To investigate whether language generation models can serve as behavioral priors for systems deployed in social settings, we evaluate their ability to generate action descriptions that achieve predefined goals under normative constraints. Moreover, we examine if models can anticipate likely consequences of actions that either observe or violate known norms, or explain why certain actions are preferable by generating relevant norm hypotheses. For this purpose, we introduce Moral Stories, a crowd-sourced dataset of structured, branching narratives for the study of grounded, goal-oriented social reasoning. Finally, we propose decoding strategies that combine multiple expert models to significantly improve the quality of generated actions, consequences, and norms compared to strong baselines.

pdf bib
CLIPScore: A Reference-free Evaluation Metric for Image Captioning
Jack Hessel | Ari Holtzman | Maxwell Forbes | Ronan Le Bras | Yejin Choi
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Image captioning has conventionally relied on reference-based automatic evaluations, where machine captions are compared against captions written by humans. This is in contrast to the reference-free manner in which humans assess caption quality. In this paper, we report the surprising empirical finding that CLIP (Radford et al., 2021), a cross-modal model pretrained on 400M image+caption pairs from the web, can be used for robust automatic evaluation of image captioning without the need for references. Experiments spanning several corpora demonstrate that our new reference-free metric, CLIPScore, achieves the highest correlation with human judgements, outperforming existing reference-based metrics like CIDEr and SPICE. Information gain experiments demonstrate that CLIPScore, with its tight focus on image-text compatibility, is complementary to existing reference-based metrics that emphasize text-text similarities. Thus, we also present a reference-augmented version, RefCLIPScore, which achieves even higher correlation. Beyond literal description tasks, several case studies reveal domains where CLIPScore performs well (clip-art images, alt-text rating), but also where it is relatively weaker in comparison to reference-based metrics, e.g., news captions that require richer contextual knowledge.

2020

pdf bib
Back to the Future: Unsupervised Backprop-based Decoding for Counterfactual and Abductive Commonsense Reasoning
Lianhui Qin | Vered Shwartz | Peter West | Chandra Bhagavatula | Jena D. Hwang | Ronan Le Bras | Antoine Bosselut | Yejin Choi
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Abductive and counterfactual reasoning, core abilities of everyday human cognition, require reasoning about what might have happened at time t, while conditioning on multiple contexts from the relative past and future. However, simultaneous incorporation of past and future contexts using generative language models (LMs) can be challenging, as they are trained either to condition only on the past context or to perform narrowly scoped text-infilling. In this paper, we propose DeLorean, a new unsupervised decoding algorithm that can flexibly incorporate both the past and future contexts using only off-the-shelf, left-to-right language models and no supervision. The key intuition of our algorithm is incorporating the future through back-propagation, during which, we only update the internal representation of the output while fixing the model parameters. By alternating between forward and backward propagation, DeLorean can decode the output representation that reflects both the left and right contexts. We demonstrate that our approach is general and applicable to two nonmonotonic reasoning tasks: abductive text generation and counterfactual story revision, where DeLorean outperforms a range of unsupervised and some supervised methods, based on automatic and human evaluation.

pdf bib
Unsupervised Commonsense Question Answering with Self-Talk
Vered Shwartz | Peter West | Ronan Le Bras | Chandra Bhagavatula | Yejin Choi
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Natural language understanding involves reading between the lines with implicit background knowledge. Current systems either rely on pre-trained language models as the sole implicit source of world knowledge, or resort to external knowledge bases (KBs) to incorporate additional relevant knowledge. We propose an unsupervised framework based on self-talk as a novel alternative to multiple-choice commonsense tasks. Inspired by inquiry-based discovery learning (Bruner, 1961), our approach inquires language models with a number of information seeking questions such as “what is the definition of...” to discover additional background knowledge. Empirical results demonstrate that the self-talk procedure substantially improves the performance of zero-shot language model baselines on four out of six commonsense benchmarks, and competes with models that obtain knowledge from external KBs. While our approach improves performance on several benchmarks, the self-talk induced knowledge even when leading to correct answers is not always seen as helpful by human judges, raising interesting questions about the inner-workings of pre-trained language models for commonsense reasoning.

pdf bib
Generative Data Augmentation for Commonsense Reasoning
Yiben Yang | Chaitanya Malaviya | Jared Fernandez | Swabha Swayamdipta | Ronan Le Bras | Ji-Ping Wang | Chandra Bhagavatula | Yejin Choi | Doug Downey
Findings of the Association for Computational Linguistics: EMNLP 2020

Recent advances in commonsense reasoning depend on large-scale human-annotated training sets to achieve peak performance. However, manual curation of training sets is expensive and has been shown to introduce annotation artifacts that neural models can readily exploit and overfit to. We propose a novel generative data augmentation technique, G-DAUGˆC, that aims to achieve more accurate and robust learning in a low-resource setting. Our approach generates synthetic examples using pretrained language models and selects the most informative and diverse set of examples for data augmentation. On experiments with multiple commonsense reasoning benchmarks, G-DAUGˆC consistently outperforms existing data augmentation methods based on back-translation, establishing a new state-of-the-art on WinoGrande, CODAH, and CommonsenseQA, as well as enhances out-of-distribution generalization, proving to be robust against adversaries or perturbations. Our analysis demonstrates that G-DAUGˆC produces a diverse set of fluent training examples, and that its selection and training approaches are important for performance.

pdf bib
Natural Language Rationales with Full-Stack Visual Reasoning: From Pixels to Semantic Frames to Commonsense Graphs
Ana Marasović | Chandra Bhagavatula | Jae sung Park | Ronan Le Bras | Noah A. Smith | Yejin Choi
Findings of the Association for Computational Linguistics: EMNLP 2020

Natural language rationales could provide intuitive, higher-level explanations that are easily understandable by humans, complementing the more broadly studied lower-level explanations based on gradients or attention weights. We present the first study focused on generating natural language rationales across several complex visual reasoning tasks: visual commonsense reasoning, visual-textual entailment, and visual question answering. The key challenge of accurate rationalization is comprehensive image understanding at all levels: not just their explicit content at the pixel level, but their contextual contents at the semantic and pragmatic levels. We present RationaleˆVT Transformer, an integrated model that learns to generate free-text rationales by combining pretrained language models with object recognition, grounded visual semantic frames, and visual commonsense graphs. Our experiments show that free-text rationalization is a promising research direction to complement model interpretability for complex visual-textual reasoning tasks. In addition, we find that integration of richer semantic and pragmatic visual features improves visual fidelity of rationales.

pdf bib
Thinking Like a Skeptic: Defeasible Inference in Natural Language
Rachel Rudinger | Vered Shwartz | Jena D. Hwang | Chandra Bhagavatula | Maxwell Forbes | Ronan Le Bras | Noah A. Smith | Yejin Choi
Findings of the Association for Computational Linguistics: EMNLP 2020

Defeasible inference is a mode of reasoning in which an inference (X is a bird, therefore X flies) may be weakened or overturned in light of new evidence (X is a penguin). Though long recognized in classical AI and philosophy, defeasible inference has not been extensively studied in the context of contemporary data-driven research on natural language inference and commonsense reasoning. We introduce Defeasible NLI (abbreviated 𝛿-NLI), a dataset for defeasible inference in natural language. Defeasible NLI contains extensions to three existing inference datasets covering diverse modes of reasoning: common sense, natural language inference, and social norms. From Defeasible NLI, we develop both a classification and generation task for defeasible inference, and demonstrate that the generation task is much more challenging. Despite lagging human performance, however, generative models trained on this data are capable of writing sentences that weaken or strengthen a specified inference up to 68% of the time.

2019

pdf bib
SemEval-2019 Task 10: Math Question Answering
Mark Hopkins | Ronan Le Bras | Cristian Petrescu-Prahova | Gabriel Stanovsky | Hannaneh Hajishirzi | Rik Koncel-Kedziorski
Proceedings of the 13th International Workshop on Semantic Evaluation

We report on the SemEval 2019 task on math question answering. We provided a question set derived from Math SAT practice exams, including 2778 training questions and 1082 test questions. For a significant subset of these questions, we also provided SMT-LIB logical form annotations and an interpreter that could solve these logical forms. Systems were evaluated based on the percentage of correctly answered questions. The top system correctly answered 45% of the test questions, a considerable improvement over the 17% random guessing baseline.

pdf bib
Cosmos QA: Machine Reading Comprehension with Contextual Commonsense Reasoning
Lifu Huang | Ronan Le Bras | Chandra Bhagavatula | Yejin Choi
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Understanding narratives requires reading between the lines, which in turn, requires interpreting the likely causes and effects of events, even when they are not mentioned explicitly. In this paper, we introduce Cosmos QA, a large-scale dataset of 35,600 problems that require commonsense-based reading comprehension, formulated as multiple-choice questions. In stark contrast to most existing reading comprehension datasets where the questions focus on factual and literal understanding of the context paragraph, our dataset focuses on reading between the lines over a diverse collection of people’s everyday narratives, asking such questions as “what might be the possible reason of ...?", or “what would have happened if ..." that require reasoning beyond the exact text spans in the context. To establish baseline performances on Cosmos QA, we experiment with several state-of-the-art neural architectures for reading comprehension, and also propose a new architecture that improves over the competitive baselines. Experimental results demonstrate a significant gap between machine (68.4%) and human performance (94%), pointing to avenues for future research on commonsense machine comprehension. Dataset, code and leaderboard is publicly available at https://wilburone.github.io/cosmos.

pdf bib
Social IQa: Commonsense Reasoning about Social Interactions
Maarten Sap | Hannah Rashkin | Derek Chen | Ronan Le Bras | Yejin Choi
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

We introduce Social IQa, the first large-scale benchmark for commonsense reasoning about social situations. Social IQa contains 38,000 multiple choice questions for probing emotional and social intelligence in a variety of everyday situations (e.g., Q: “Jordan wanted to tell Tracy a secret, so Jordan leaned towards Tracy. Why did Jordan do this?” A: “Make sure no one else could hear”). Through crowdsourcing, we collect commonsense questions along with correct and incorrect answers about social interactions, using a new framework that mitigates stylistic artifacts in incorrect answers by asking workers to provide the right answer to a different but related question. Empirical results show that our benchmark is challenging for existing question-answering models based on pretrained language models, compared to human performance (>20% gap). Notably, we further establish Social IQa as a resource for transfer learning of commonsense knowledge, achieving state-of-the-art performance on multiple commonsense reasoning tasks (Winograd Schemas, COPA).

2017

pdf bib
Beyond Sentential Semantic Parsing: Tackling the Math SAT with a Cascade of Tree Transducers
Mark Hopkins | Cristian Petrescu-Prahova | Roie Levin | Ronan Le Bras | Alvaro Herrasti | Vidur Joshi
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

We present an approach for answering questions that span multiple sentences and exhibit sophisticated cross-sentence anaphoric phenomena, evaluating on a rich source of such questions – the math portion of the Scholastic Aptitude Test (SAT). By using a tree transducer cascade as its basic architecture, our system propagates uncertainty from multiple sources (e.g. coreference resolution or verb interpretation) until it can be confidently resolved. Experiments show the first-ever results 43% recall and 91% precision) on SAT algebra word problems. We also apply our system to the public Dolphin algebra question set, and improve the state-of-the-art F1-score from 73.9% to 77.0%.