Quan Wang


2021

pdf bib
Link Prediction on N-ary Relational Facts: A Graph-based Approach
Quan Wang | Haifeng Wang | Yajuan Lyu | Yong Zhu
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
BDKG at MEDIQA 2021: System Report for the Radiology Report Summarization Task
Songtai Dai | Quan Wang | Yajuan Lyu | Yong Zhu
Proceedings of the 20th Workshop on Biomedical Language Processing

This paper presents our winning system at the Radiology Report Summarization track of the MEDIQA 2021 shared task. Radiology report summarization automatically summarizes radiology findings into free-text impressions. This year’s task emphasizes the generalization and transfer ability of participating systems. Our system is built upon a pre-trained Transformer encoder-decoder architecture, i.e., PEGASUS, deployed with an additional domain adaptation module to particularly handle the transfer and generalization issue. Heuristics like ensemble and text normalization are also used. Our system is conceptually simple yet highly effective, achieving a ROUGE-2 score of 0.436 on test set and ranked the 1st place among all participating systems.

2020

pdf bib
Event Extraction as Multi-turn Question Answering
Fayuan Li | Weihua Peng | Yuguang Chen | Quan Wang | Lu Pan | Yajuan Lyu | Yong Zhu
Findings of the Association for Computational Linguistics: EMNLP 2020

Event extraction, which aims to identify event triggers of pre-defined event types and their arguments of specific roles, is a challenging task in NLP. Most traditional approaches formulate this task as classification problems, with event types or argument roles taken as golden labels. Such approaches fail to model rich interactions among event types and arguments of different roles, and cannot generalize to new types or roles. This work proposes a new paradigm that formulates event extraction as multi-turn question answering. Our approach, MQAEE, casts the extraction task into a series of reading comprehension problems, by which it extracts triggers and arguments successively from a given sentence. A history answer embedding strategy is further adopted to model question answering history in the multi-turn process. By this new formulation, MQAEE makes full use of dependency among arguments and event types, and generalizes well to new types with new argument roles. Empirical results on ACE 2005 shows that MQAEE outperforms current state-of-the-art, pushing the final F1 of argument extraction to 53.4% (+2.0%). And it also has a good generalization ability, achieving competitive performance on 13 new event types even if trained only with a few samples of them.

pdf bib
Curriculum Learning for Natural Language Understanding
Benfeng Xu | Licheng Zhang | Zhendong Mao | Quan Wang | Hongtao Xie | Yongdong Zhang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

With the great success of pre-trained language models, the pretrain-finetune paradigm now becomes the undoubtedly dominant solution for natural language understanding (NLU) tasks. At the fine-tune stage, target task data is usually introduced in a completely random order and treated equally. However, examples in NLU tasks can vary greatly in difficulty, and similar to human learning procedure, language models can benefit from an easy-to-difficult curriculum. Based on this idea, we propose our Curriculum Learning approach. By reviewing the trainset in a crossed way, we are able to distinguish easy examples from difficult ones, and arrange a curriculum for language models. Without any manual model architecture design or use of external data, our Curriculum Learning approach obtains significant and universal performance improvements on a wide range of NLU tasks.

2019

pdf bib
Enhancing Pre-Trained Language Representations with Rich Knowledge for Machine Reading Comprehension
An Yang | Quan Wang | Jing Liu | Kai Liu | Yajuan Lyu | Hua Wu | Qiaoqiao She | Sujian Li
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Machine reading comprehension (MRC) is a crucial and challenging task in NLP. Recently, pre-trained language models (LMs), especially BERT, have achieved remarkable success, presenting new state-of-the-art results in MRC. In this work, we investigate the potential of leveraging external knowledge bases (KBs) to further improve BERT for MRC. We introduce KT-NET, which employs an attention mechanism to adaptively select desired knowledge from KBs, and then fuses selected knowledge with BERT to enable context- and knowledge-aware predictions. We believe this would combine the merits of both deep LMs and curated KBs towards better MRC. Experimental results indicate that KT-NET offers significant and consistent improvements over BERT, outperforming competitive baselines on ReCoRD and SQuAD1.1 benchmarks. Notably, it ranks the 1st place on the ReCoRD leaderboard, and is also the best single model on the SQuAD1.1 leaderboard at the time of submission (March 4th, 2019).

pdf bib
Adaptive Convolution for Multi-Relational Learning
Xiaotian Jiang | Quan Wang | Bin Wang
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

We consider the problem of learning distributed representations for entities and relations of multi-relational data so as to predict missing links therein. Convolutional neural networks have recently shown their superiority for this problem, bringing increased model expressiveness while remaining parameter efficient. Despite the success, previous convolution designs fail to model full interactions between input entities and relations, which potentially limits the performance of link prediction. In this work we introduce ConvR, an adaptive convolutional network designed to maximize entity-relation interactions in a convolutional fashion. ConvR adaptively constructs convolution filters from relation representations, and applies these filters across entity representations to generate convolutional features. As such, ConvR enables rich interactions between entity and relation representations at diverse regions, and all the convolutional features generated will be able to capture such interactions. We evaluate ConvR on multiple benchmark datasets. Experimental results show that: (1) ConvR performs substantially better than competitive baselines in almost all the metrics and on all the datasets; (2) Compared with state-of-the-art convolutional models, ConvR is not only more effective but also more efficient. It offers a 7% increase in MRR and a 6% increase in Hits@10, while saving 12% in parameter storage.

pdf bib
D-NET: A Pre-Training and Fine-Tuning Framework for Improving the Generalization of Machine Reading Comprehension
Hongyu Li | Xiyuan Zhang | Yibing Liu | Yiming Zhang | Quan Wang | Xiangyang Zhou | Jing Liu | Hua Wu | Haifeng Wang
Proceedings of the 2nd Workshop on Machine Reading for Question Answering

In this paper, we introduce a simple system Baidu submitted for MRQA (Machine Reading for Question Answering) 2019 Shared Task that focused on generalization of machine reading comprehension (MRC) models. Our system is built on a framework of pretraining and fine-tuning, namely D-NET. The techniques of pre-trained language models and multi-task learning are explored to improve the generalization of MRC models and we conduct experiments to examine the effectiveness of these strategies. Our system is ranked at top 1 of all the participants in terms of averaged F1 score. Our codes and models will be released at PaddleNLP.

2018

pdf bib
Improving Knowledge Graph Embedding Using Simple Constraints
Boyang Ding | Quan Wang | Bin Wang | Li Guo
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Embedding knowledge graphs (KGs) into continuous vector spaces is a focus of current research. Early works performed this task via simple models developed over KG triples. Recent attempts focused on either designing more complicated triple scoring models, or incorporating extra information beyond triples. This paper, by contrast, investigates the potential of using very simple constraints to improve KG embedding. We examine non-negativity constraints on entity representations and approximate entailment constraints on relation representations. The former help to learn compact and interpretable representations for entities. The latter further encode regularities of logical entailment between relations into their distributed representations. These constraints impose prior beliefs upon the structure of the embedding space, without negative impacts on efficiency or scalability. Evaluation on WordNet, Freebase, and DBpedia shows that our approach is simple yet surprisingly effective, significantly and consistently outperforming competitive baselines. The constraints imposed indeed improve model interpretability, leading to a substantially increased structuring of the embedding space. Code and data are available at https://github.com/iieir-km/ComplEx-NNE_AER.

2016

pdf bib
Relation Extraction with Multi-instance Multi-label Convolutional Neural Networks
Xiaotian Jiang | Quan Wang | Peng Li | Bin Wang
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

Distant supervision is an efficient approach that automatically generates labeled data for relation extraction (RE). Traditional distantly supervised RE systems rely heavily on handcrafted features, and hence suffer from error propagation. Recently, a neural network architecture has been proposed to automatically extract features for relation classification. However, this approach follows the traditional expressed-at-least-once assumption, and fails to make full use of information across different sentences. Moreover, it ignores the fact that there can be multiple relations holding between the same entity pair. In this paper, we propose a multi-instance multi-label convolutional neural network for distantly supervised RE. It first relaxes the expressed-at-least-once assumption, and employs cross-sentence max-pooling so as to enable information sharing across different sentences. Then it handles overlapping relations by multi-label learning with a neural network classifier. Experimental results show that our approach performs significantly and consistently better than state-of-the-art methods.

pdf bib
Jointly Embedding Knowledge Graphs and Logical Rules
Shu Guo | Quan Wang | Lihong Wang | Bin Wang | Li Guo
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

pdf bib
Multi-Granularity Chinese Word Embedding
Rongchao Yin | Quan Wang | Peng Li | Rui Li | Bin Wang
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

pdf bib
Knowledge Base Completion via Coupled Path Ranking
Quan Wang | Jing Liu | Yuanfei Luo | Bin Wang | Chin-Yew Lin
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

2015

pdf bib
Semantically Smooth Knowledge Graph Embedding
Shu Guo | Quan Wang | Bin Wang | Lihong Wang | Li Guo
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

pdf bib
Context-Dependent Knowledge Graph Embedding
Yuanfei Luo | Quan Wang | Bin Wang | Li Guo
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

2014

pdf bib
A Regularized Competition Model for Question Difficulty Estimation in Community Question Answering Services
Quan Wang | Jing Liu | Bin Wang | Li Guo
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)

2013

pdf bib
Question Difficulty Estimation in Community Question Answering Services
Jing Liu | Quan Wang | Chin-Yew Lin | Hsiao-Wuen Hon
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing