Prathyusha Jwalapuram


2021

pdf bib
Rethinking Coherence Modeling: Synthetic vs. Downstream Tasks
Tasnim Mohiuddin | Prathyusha Jwalapuram | Xiang Lin | Shafiq Joty
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Although coherence modeling has come a long way in developing novel models, their evaluation on downstream applications for which they are purportedly developed has largely been neglected. With the advancements made by neural approaches in applications such as machine translation (MT), summarization and dialog systems, the need for coherence evaluation of these tasks is now more crucial than ever. However, coherence models are typically evaluated only on synthetic tasks, which may not be representative of their performance in downstream applications. To investigate how representative the synthetic tasks are of downstream use cases, we conduct experiments on benchmarking well-known traditional and neural coherence models on synthetic sentence ordering tasks, and contrast this with their performance on three downstream applications: coherence evaluation for MT and summarization, and next utterance prediction in retrieval-based dialog. Our results demonstrate a weak correlation between the model performances in the synthetic tasks and the downstream applications, motivating alternate training and evaluation methods for coherence models.

2020

pdf bib
Pronoun-Targeted Fine-tuning for NMT with Hybrid Losses
Prathyusha Jwalapuram | Shafiq Joty | Youlin Shen
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Popular Neural Machine Translation model training uses strategies like backtranslation to improve BLEU scores, requiring large amounts of additional data and training. We introduce a class of conditional generative-discriminative hybrid losses that we use to fine-tune a trained machine translation model. Through a combination of targeted fine-tuning objectives and intuitive re-use of the training data the model has failed to adequately learn from, we improve the model performance of both a sentence-level and a contextual model without using any additional data. We target the improvement of pronoun translations through our fine-tuning and evaluate our models on a pronoun benchmark testset. Our sentence-level model shows a 0.5 BLEU improvement on both the WMT14 and the IWSLT13 De-En testsets, while our contextual model achieves the best results, improving from 31.81 to 32 BLEU on WMT14 De-En testset, and from 32.10 to 33.13 on the IWSLT13 De-En testset, with corresponding improvements in pronoun translation. We further show the generalizability of our method by reproducing the improvements on two additional language pairs, Fr-En and Cs-En.

2019

pdf bib
A Unified Linear-Time Framework for Sentence-Level Discourse Parsing
Xiang Lin | Shafiq Joty | Prathyusha Jwalapuram | M Saiful Bari
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

We propose an efficient neural framework for sentence-level discourse analysis in accordance with Rhetorical Structure Theory (RST). Our framework comprises a discourse segmenter to identify the elementary discourse units (EDU) in a text, and a discourse parser that constructs a discourse tree in a top-down fashion. Both the segmenter and the parser are based on Pointer Networks and operate in linear time. Our segmenter yields an F1 score of 95.4%, and our parser achieves an F1 score of 81.7% on the aggregated labeled (relation) metric, surpassing previous approaches by a good margin and approaching human agreement on both tasks (98.3 and 83.0 F1).

pdf bib
Evaluating Pronominal Anaphora in Machine Translation: An Evaluation Measure and a Test Suite
Prathyusha Jwalapuram | Shafiq Joty | Irina Temnikova | Preslav Nakov
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

The ongoing neural revolution in machine translation has made it easier to model larger contexts beyond the sentence-level, which can potentially help resolve some discourse-level ambiguities such as pronominal anaphora, thus enabling better translations. Unfortunately, even when the resulting improvements are seen as substantial by humans, they remain virtually unnoticed by traditional automatic evaluation measures like BLEU, as only a few words end up being affected. Thus, specialized evaluation measures are needed. With this aim in mind, we contribute an extensive, targeted dataset that can be used as a test suite for pronoun translation, covering multiple source languages and different pronoun errors drawn from real system translations, for English. We further propose an evaluation measure to differentiate good and bad pronoun translations. We also conduct a user study to report correlations with human judgments.

2017

pdf bib
Evaluating Dialogs based on Grice’s Maxims
Prathyusha Jwalapuram
Proceedings of the Student Research Workshop Associated with RANLP 2017

There is no agreed upon standard for the evaluation of conversational dialog systems, which are well-known to be hard to evaluate due to the difficulty in pinning down metrics that will correspond to human judgements and the subjective nature of human judgment itself. We explored the possibility of using Grice’s Maxims to evaluate effective communication in conversation. We collected some system generated dialogs from popular conversational chatbots across the spectrum and conducted a survey to see how the human judgements based on Gricean maxims correlate, and if such human judgments can be used as an effective evaluation metric for conversational dialog.

pdf bib
Handling Multi-Sentence Queries in a Domain Independent Dialogue System
Prathyusha Jwalapuram | Radhika Mamidi
Proceedings of the 14th International Conference on Natural Language Processing (ICON-2017)

pdf bib
End to End Dialog System for Telugu
Prathyusha Danda | Prathyusha Jwalapuram | Manish Shrivastava
Proceedings of the 14th International Conference on Natural Language Processing (ICON-2017)