Pinzhen Chen


2021

pdf bib
The University of Edinburgh’s English-German and English-Hausa Submissions to the WMT21 News Translation Task
Pinzhen Chen | Jindřich Helcl | Ulrich Germann | Laurie Burchell | Nikolay Bogoychev | Antonio Valerio Miceli Barone | Jonas Waldendorf | Alexandra Birch | Kenneth Heafield
Proceedings of the Sixth Conference on Machine Translation

This paper presents the University of Edinburgh’s constrained submissions of English-German and English-Hausa systems to the WMT 2021 shared task on news translation. We build En-De systems in three stages: corpus filtering, back-translation, and fine-tuning. For En-Ha we use an iterative back-translation approach on top of pre-trained En-De models and investigate vocabulary embedding mapping.

pdf bib
The University of Edinburgh’s Bengali-Hindi Submissions to the WMT21 News Translation Task
Proyag Pal | Alham Fikri Aji | Pinzhen Chen | Sukanta Sen
Proceedings of the Sixth Conference on Machine Translation

We describe the University of Edinburgh’s BengaliHindi constrained systems submitted to the WMT21 News Translation task. We submitted ensembles of Transformer models built with large-scale back-translation and fine-tuned on subsets of training data retrieved based on similarity to the target domain.

pdf bib
Efficient Machine Translation with Model Pruning and Quantization
Maximiliana Behnke | Nikolay Bogoychev | Alham Fikri Aji | Kenneth Heafield | Graeme Nail | Qianqian Zhu | Svetlana Tchistiakova | Jelmer van der Linde | Pinzhen Chen | Sidharth Kashyap | Roman Grundkiewicz
Proceedings of the Sixth Conference on Machine Translation

We participated in all tracks of the WMT 2021 efficient machine translation task: single-core CPU, multi-core CPU, and GPU hardware with throughput and latency conditions. Our submissions combine several efficiency strategies: knowledge distillation, a simpler simple recurrent unit (SSRU) decoder with one or two layers, lexical shortlists, smaller numerical formats, and pruning. For the CPU track, we used quantized 8-bit models. For the GPU track, we experimented with FP16 and 8-bit integers in tensorcores. Some of our submissions optimize for size via 4-bit log quantization and omitting a lexical shortlist. We have extended pruning to more parts of the network, emphasizing component- and block-level pruning that actually improves speed unlike coefficient-wise pruning.

pdf bib
The Highs and Lows of Simple Lexical Domain Adaptation Approaches for Neural Machine Translation
Nikolay Bogoychev | Pinzhen Chen
Proceedings of the Second Workshop on Insights from Negative Results in NLP

Machine translation systems are vulnerable to domain mismatch, especially in a low-resource scenario. Out-of-domain translations are often of poor quality and prone to hallucinations, due to exposure bias and the decoder acting as a language model. We adopt two approaches to alleviate this problem: lexical shortlisting restricted by IBM statistical alignments, and hypothesis reranking based on similarity. The methods are computationally cheap and show success on low-resource out-of-domain test sets. However, the methods lose advantage when there is sufficient data or too great domain mismatch. This is due to both the IBM model losing its advantage over the implicitly learned neural alignment, and issues with subword segmentation of unseen words.

2020

pdf bib
Character Mapping and Ad-hoc Adaptation: Edinburgh’s IWSLT 2020 Open Domain Translation System
Pinzhen Chen | Nikolay Bogoychev | Ulrich Germann
Proceedings of the 17th International Conference on Spoken Language Translation

This paper describes the University of Edinburgh’s neural machine translation systems submitted to the IWSLT 2020 open domain JapaneseChinese translation task. On top of commonplace techniques like tokenisation and corpus cleaning, we explore character mapping and unsupervised decoding-time adaptation. Our techniques focus on leveraging the provided data, and we show the positive impact of each technique through the gradual improvement of BLEU.

pdf bib
Parallel Sentence Mining by Constrained Decoding
Pinzhen Chen | Nikolay Bogoychev | Kenneth Heafield | Faheem Kirefu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

We present a novel method to extract parallel sentences from two monolingual corpora, using neural machine translation. Our method relies on translating sentences in one corpus, but constraining the decoding by a prefix tree built on the other corpus. We argue that a neural machine translation system by itself can be a sentence similarity scorer and it efficiently approximates pairwise comparison with a modified beam search. When benchmarked on the BUCC shared task, our method achieves results comparable to other submissions.

pdf bib
ParaCrawl: Web-Scale Acquisition of Parallel Corpora
Marta Bañón | Pinzhen Chen | Barry Haddow | Kenneth Heafield | Hieu Hoang | Miquel Esplà-Gomis | Mikel L. Forcada | Amir Kamran | Faheem Kirefu | Philipp Koehn | Sergio Ortiz Rojas | Leopoldo Pla Sempere | Gema Ramírez-Sánchez | Elsa Sarrías | Marek Strelec | Brian Thompson | William Waites | Dion Wiggins | Jaume Zaragoza
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

We report on methods to create the largest publicly available parallel corpora by crawling the web, using open source software. We empirically compare alternative methods and publish benchmark data sets for sentence alignment and sentence pair filtering. We also describe the parallel corpora released and evaluate their quality and their usefulness to create machine translation systems.