Pei Ke


2021

pdf bib
JointGT: Graph-Text Joint Representation Learning for Text Generation from Knowledge Graphs
Pei Ke | Haozhe Ji | Yu Ran | Xin Cui | Liwei Wang | Linfeng Song | Xiaoyan Zhu | Minlie Huang
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

2020

pdf bib
Generating Commonsense Explanation by Extracting Bridge Concepts from Reasoning Paths
Haozhe Ji | Pei Ke | Shaohan Huang | Furu Wei | Minlie Huang
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing

Commonsense explanation generation aims to empower the machine’s sense-making capability by generating plausible explanations to statements against commonsense. While this task is easy to human, the machine still struggles to generate reasonable and informative explanations. In this work, we propose a method that first extracts the underlying concepts which are served as bridges in the reasoning chain and then integrates these concepts to generate the final explanation. To facilitate the reasoning process, we utilize external commonsense knowledge to build the connection between a statement and the bridge concepts by extracting and pruning multi-hop paths to build a subgraph. We design a bridge concept extraction model that first scores the triples, routes the paths in the subgraph, and further selects bridge concepts with weak supervision at both the triple level and the concept level. We conduct experiments on the commonsense explanation generation task and our model outperforms the state-of-the-art baselines in both automatic and human evaluation.

pdf bib
Language Generation with Multi-Hop Reasoning on Commonsense Knowledge Graph
Haozhe Ji | Pei Ke | Shaohan Huang | Furu Wei | Xiaoyan Zhu | Minlie Huang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Despite the success of generative pre-trained language models on a series of text generation tasks, they still suffer in cases where reasoning over underlying commonsense knowledge is required during generation. Existing approaches that integrate commonsense knowledge into generative pre-trained language models simply transfer relational knowledge by post-training on individual knowledge triples while ignoring rich connections within the knowledge graph. We argue that exploiting both the structural and semantic information of the knowledge graph facilitates commonsense-aware text generation. In this paper, we propose Generation with Multi-Hop Reasoning Flow (GRF) that enables pre-trained models with dynamic multi-hop reasoning on multi-relational paths extracted from the external commonsense knowledge graph. We empirically show that our model outperforms existing baselines on three text generation tasks that require reasoning over commonsense knowledge. We also demonstrate the effectiveness of the dynamic multi-hop reasoning module with reasoning paths inferred by the model that provide rationale to the generation.

pdf bib
SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge
Pei Ke | Haozhe Ji | Siyang Liu | Xiaoyan Zhu | Minlie Huang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Most of the existing pre-trained language representation models neglect to consider the linguistic knowledge of texts, which can promote language understanding in NLP tasks. To benefit the downstream tasks in sentiment analysis, we propose a novel language representation model called SentiLARE, which introduces word-level linguistic knowledge including part-of-speech tag and sentiment polarity (inferred from SentiWordNet) into pre-trained models. We first propose a context-aware sentiment attention mechanism to acquire the sentiment polarity of each word with its part-of-speech tag by querying SentiWordNet. Then, we devise a new pre-training task called label-aware masked language model to construct knowledge-aware language representation. Experiments show that SentiLARE obtains new state-of-the-art performance on a variety of sentiment analysis tasks.

2019

pdf bib
ARAML: A Stable Adversarial Training Framework for Text Generation
Pei Ke | Fei Huang | Minlie Huang | Xiaoyan Zhu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Most of the existing generative adversarial networks (GAN) for text generation suffer from the instability of reinforcement learning training algorithms such as policy gradient, leading to unstable performance. To tackle this problem, we propose a novel framework called Adversarial Reward Augmented Maximum Likelihood (ARAML). During adversarial training, the discriminator assigns rewards to samples which are acquired from a stationary distribution near the data rather than the generator’s distribution. The generator is optimized with maximum likelihood estimation augmented by the discriminator’s rewards instead of policy gradient. Experiments show that our model can outperform state-of-the-art text GANs with a more stable training process.

2018

pdf bib
Generating Informative Responses with Controlled Sentence Function
Pei Ke | Jian Guan | Minlie Huang | Xiaoyan Zhu
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Sentence function is a significant factor to achieve the purpose of the speaker, which, however, has not been touched in large-scale conversation generation so far. In this paper, we present a model to generate informative responses with controlled sentence function. Our model utilizes a continuous latent variable to capture various word patterns that realize the expected sentence function, and introduces a type controller to deal with the compatibility of controlling sentence function and generating informative content. Conditioned on the latent variable, the type controller determines the type (i.e., function-related, topic, and ordinary word) of a word to be generated at each decoding position. Experiments show that our model outperforms state-of-the-art baselines, and it has the ability to generate responses with both controlled sentence function and informative content.