Nazmul Kazi
2021
Automatically Cataloging Scholarly Articles using Library of Congress Subject Headings
Nazmul Kazi
|
Nathaniel Lane
|
Indika Kahanda
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Student Research Workshop
Institutes are required to catalog their articles with proper subject headings so that the users can easily retrieve relevant articles from the institutional repositories. However, due to the rate of proliferation of the number of articles in these repositories, it is becoming a challenge to manually catalog the newly added articles at the same pace. To address this challenge, we explore the feasibility of automatically annotating articles with Library of Congress Subject Headings (LCSH). We first use web scraping to extract keywords for a collection of articles from the Repository Analytics and Metrics Portal (RAMP). Then, we map these keywords to LCSH names for developing a gold-standard dataset. As a case study, using the subset of Biology-related LCSH concepts, we develop predictive models by formulating this task as a multi-label classification problem. Our experimental results demonstrate the viability of this approach for predicting LCSH for scholarly articles.
2019
Automatically Generating Psychiatric Case Notes From Digital Transcripts of Doctor-Patient Conversations
Nazmul Kazi
|
Indika Kahanda
Proceedings of the 2nd Clinical Natural Language Processing Workshop
Electronic health records (EHRs) are notorious for reducing the face-to-face time with patients while increasing the screen-time for clinicians leading to burnout. This is especially problematic for psychiatry care in which maintaining consistent eye-contact and non-verbal cues are just as important as the spoken words. In this ongoing work, we explore the feasibility of automatically generating psychiatric EHR case notes from digital transcripts of doctor-patient conversation using a two-step approach: (1) predicting semantic topics for segments of transcripts using supervised machine learning, and (2) generating formal text of those segments using natural language processing. Through a series of preliminary experimental results obtained through a collection of synthetic and real-life transcripts, we demonstrate the viability of this approach.
RDoC Task at BioNLP-OST 2019
Mohammad Anani
|
Nazmul Kazi
|
Matthew Kuntz
|
Indika Kahanda
Proceedings of The 5th Workshop on BioNLP Open Shared Tasks
BioNLP Open Shared Tasks (BioNLP-OST) is an international competition organized to facilitate development and sharing of computational tasks of biomedical text mining and solutions to them. For BioNLP-OST 2019, we introduced a new mental health informatics task called “RDoC Task”, which is composed of two subtasks: information retrieval and sentence extraction through National Institutes of Mental Health’s Research Domain Criteria framework. Five and four teams around the world participated in the two tasks, respectively. According to the performance on the two tasks, we observe that there is room for improvement for text mining on brain research and mental illness.
Search