With the constantly growing amount of information, the need arises to automatically summarize this written information. One of the challenges in the summary is that it’s difficult to generalize. For example, summarizing a news article is very different from summarizing a financial earnings report. This paper reports an approach for summarizing financial texts, which are different from the documents from other domains at least in three parameters: length, structure, and format. Our approach considers these parameters, it is adapted to hierarchical structure of sections, document length, and special “language”. The approach builds an hierarchical summary, visualized as a tree with summaries under different discourse topics. The approach was evaluated using extrinsic and intrinsic automated evaluations, which are reported in this paper. As all participants of the Financial Narrative Summarisation (FNS 2020) shared task, we used FNS2020 dataset for evaluations.
With the constantly growing amount of information, the need arises to automatically summarize this written information. One of the challenges in the summary is that it’s difficult to generalize. For example, summarizing a news article is very different from summarizing a financial earnings report. This paper reports an approach for summarizing financial texts, which are different from the documents from other domains at least in three parameters: length, structure, and format. Our approach considers these parameters, it is adapted to hierarchical structure of sections, document length, and special “language”. The approach builds an hierarchical summary, visualized as a tree with summaries under different discourse topics. The approach was evaluated using extrinsic and intrinsic automated evaluations, which are reported in this paper. As all participants of the Financial Narrative Summarisation (FNS 2020) shared task, we used FNS2020 dataset for evaluations.
Automatic definition extraction from texts is an important task that has numerous applications in several natural language processing fields such as summarization, analysis of scientific texts, automatic taxonomy generation, ontology generation, concept identification, and question answering. For definitions that are contained within a single sentence, this problem can be viewed as a binary classification of sentences into definitions and non-definitions. Definitions in scientific literature can be generic (Wikipedia) or more formal (mathematical articles). In this paper, we focus on automatic detection of one-sentence definitions in mathematical texts, which are difficult to separate from surrounding text. We experiment with several data representations, which include sentence syntactic structure and word embeddings, and apply deep learning methods such as convolutional neural network (CNN) and recurrent neural network (RNN), in order to identify mathematical definitions. Our experiments demonstrate the superiority of CNN and its combination with RNN, applied on the syntactically-enriched input representation. We also present a new dataset for definition extraction from mathematical texts. We demonstrate that the use of this dataset for training learning models improves the quality of definition extraction when these models are then used for other definition datasets. Our experiments with different domains approve that mathematical definitions require special treatment, and that using cross-domain learning is inefficient.
Automatic headline generation is a subtask of one-line summarization with many reported applications. Evaluation of systems generating headlines is a very challenging and undeveloped area. We introduce the Headline Evaluation and Analysis System (HEvAS) that performs automatic evaluation of systems in terms of a quality of the generated headlines. HEvAS provides two types of metrics– one which measures the informativeness of a headline, and another that measures its readability. The results of evaluation can be compared to the results of baseline methods which are implemented in HEvAS. The system also performs the statistical analysis of the evaluation results and provides different visualization charts. This paper describes all evaluation metrics, baselines, analysis, and architecture, utilized by our system.
Various Seq2Seq learning models designed for machine translation were applied for abstractive summarization task recently. Despite these models provide high ROUGE scores, they are limited to generate comprehensive summaries with a high level of abstraction due to its degenerated attention distribution. We introduce Diverse Convolutional Seq2Seq Model(DivCNN Seq2Seq) using Determinantal Point Processes methods(Micro DPPs and Macro DPPs) to produce attention distribution considering both quality and diversity. Without breaking the end to end architecture, DivCNN Seq2Seq achieves a higher level of comprehensiveness compared to vanilla models and strong baselines. All the reproducible codes and datasets are available online.
Query-based text summarization is aimed at extracting essential information that answers the query from original text. The answer is presented in a minimal, often predefined, number of words. In this paper we introduce a new unsupervised approach for query-based extractive summarization, based on the minimum description length (MDL) principle that employs Krimp compression algorithm (Vreeken et al., 2011). The key idea of our approach is to select frequent word sets related to a given query that compress document sentences better and therefore describe the document better. A summary is extracted by selecting sentences that best cover query-related frequent word sets. The approach is evaluated based on the DUC 2005 and DUC 2006 datasets which are specifically designed for query-based summarization (DUC, 2005 2006). It competes with the best results.
Event detection and analysis with respect to public opinions and sentiments in social media is a broad and well-addressed research topic. However, the characteristics and sheer volume of noisy Twitter messages make this a difficult task. This demonstration paper describes a TWItter event Summarizer and Trend detector (TWIST) system for event detection, visualization, textual description, and geo-sentiment analysis of real-life events reported in Twitter.