Mike Zhang


2021

pdf bib
De-identification of Privacy-related Entities in Job Postings
Kristian Nørgaard Jensen | Mike Zhang | Barbara Plank
Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa)

De-identification is the task of detecting privacy-related entities in text, such as person names, emails and contact data. It has been well-studied within the medical domain. The need for de-identification technology is increasing, as privacy-preserving data handling is in high demand in many domains. In this paper, we focus on job postings. We present JobStack, a new corpus for de-identification of personal data in job vacancies on Stackoverflow. We introduce baselines, comparing Long-Short Term Memory (LSTM) and Transformer models. To improve these baselines, we experiment with BERT representations, and distantly related auxiliary data via multi-task learning. Our results show that auxiliary data helps to improve de-identification performance. While BERT representations improve performance, surprisingly “vanilla” BERT turned out to be more effective than BERT trained on Stackoverflow-related data.

pdf bib
Cartography Active Learning
Mike Zhang | Barbara Plank
Findings of the Association for Computational Linguistics: EMNLP 2021

We propose Cartography Active Learning (CAL), a novel Active Learning (AL) algorithm that exploits the behavior of the model on individual instances during training as a proxy to find the most informative instances for labeling. CAL is inspired by data maps, which were recently proposed to derive insights into dataset quality (Swayamdipta et al., 2020). We compare our method on popular text classification tasks to commonly used AL strategies, which instead rely on post-training behavior. We demonstrate that CAL is competitive to other common AL methods, showing that training dynamics derived from small seed data can be successfully used for AL. We provide insights into our new AL method by analyzing batch-level statistics utilizing the data maps. Our results further show that CAL results in a more data-efficient learning strategy, achieving comparable or better results with considerably less training data.

2019

pdf bib
The Effect of Translationese in Machine Translation Test Sets
Mike Zhang | Antonio Toral
Proceedings of the Fourth Conference on Machine Translation (Volume 1: Research Papers)

The effect of translationese has been studied in the field of machine translation (MT), mostly with respect to training data. We study in depth the effect of translationese on test data, using the test sets from the last three editions of WMT’s news shared task, containing 17 translation directions. We show evidence that (i) the use of translationese in test sets results in inflated human evaluation scores for MT systems; (ii) in some cases system rankings do change and (iii) the impact translationese has on a translation direction is inversely correlated to the translation quality attainable by state-of-the-art MT systems for that direction.

pdf bib
Grunn2019 at SemEval-2019 Task 5: Shared Task on Multilingual Detection of Hate
Mike Zhang | Roy David | Leon Graumans | Gerben Timmerman
Proceedings of the 13th International Workshop on Semantic Evaluation

Hate speech occurs more often than ever and polarizes society. To help counter this polarization, SemEval 2019 organizes a shared task called the Multilingual Detection of Hate. The first task (A) is to decide whether a given tweet contains hate against immigrants or women, in a multilingual perspective, for English and Spanish. In the second task (B), the system is also asked to classify the following sub-tasks: hateful tweets as aggressive or not aggressive, and to identify the target harassed as individual or generic. We evaluate multiple models, and finally combine them in an ensemble setting. This ensemble setting is built of five and three submodels for the English and Spanish task respectively. In the current setup it shows that using a bigger ensemble for English tweets performs mediocre, while a slightly smaller ensemble does work well for detecting hate speech in Spanish tweets. Our results on the test set for English show 0.378 macro F1 on task A and 0.553 macro F1 on task B. For Spanish the results are significantly higher, 0.701 macro F1 on task A and 0.734 macro F1 for task B.