Michael Zeng


2021

pdf bib
Modeling Entity Knowledge for Fact Verification
Yang Liu | Chenguang Zhu | Michael Zeng
Proceedings of the Fourth Workshop on Fact Extraction and VERification (FEVER)

Fact verification is a challenging task of identifying the truthfulness of given claims based on the retrieval of relevant evidence texts. Many claims require understanding and reasoning over external entity information for precise verification. In this paper, we propose a novel fact verification model using entity knowledge to enhance its performance. We retrieve descriptive text from Wikipedia for each entity, and then encode these descriptions by a smaller lightweight network to be fed into the main verification model. Furthermore, we boost model performance by adopting and predicting the relatedness between the claim and each evidence as additional signals. We demonstrate experimentally on a large-scale benchmark dataset FEVER that our framework achieves competitive results with a FEVER score of 72.89% on the test set.

pdf bib
Fusing Context Into Knowledge Graph for Commonsense Question Answering
Yichong Xu | Chenguang Zhu | Ruochen Xu | Yang Liu | Michael Zeng | Xuedong Huang
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Retrieval Enhanced Model for Commonsense Generation
Han Wang | Yang Liu | Chenguang Zhu | Linjun Shou | Ming Gong | Yichong Xu | Michael Zeng
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Want To Reduce Labeling Cost? GPT-3 Can Help
Shuohang Wang | Yang Liu | Yichong Xu | Chenguang Zhu | Michael Zeng
Findings of the Association for Computational Linguistics: EMNLP 2021

Data annotation is a time-consuming and labor-intensive process for many NLP tasks. Although there exist various methods to produce pseudo data labels, they are often task-specific and require a decent amount of labeled data to start with. Recently, the immense language model GPT-3 with 170 billion parameters has achieved tremendous improvement across many few-shot learning tasks. In this paper, we explore ways to leverage GPT-3 as a low-cost data labeler to train other models. We find that to make the downstream model achieve the same performance on a variety of NLU and NLG tasks, it costs 50% to 96% less to use labels from GPT-3 than using labels from humans. Furthermore, we propose a novel framework of combining pseudo labels from GPT-3 with human labels, which leads to even better performance. These results present a cost-effective data labeling methodology that is generalizable to many practical applications.

pdf bib
Enhancing Factual Consistency of Abstractive Summarization
Chenguang Zhu | William Hinthorn | Ruochen Xu | Qingkai Zeng | Michael Zeng | Xuedong Huang | Meng Jiang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Automatic abstractive summaries are found to often distort or fabricate facts in the article. This inconsistency between summary and original text has seriously impacted its applicability. We propose a fact-aware summarization model FASum to extract and integrate factual relations into the summary generation process via graph attention. We then design a factual corrector model FC to automatically correct factual errors from summaries generated by existing systems. Empirical results show that the fact-aware summarization can produce abstractive summaries with higher factual consistency compared with existing systems, and the correction model improves the factual consistency of given summaries via modifying only a few keywords.

pdf bib
SPLAT: Speech-Language Joint Pre-Training for Spoken Language Understanding
Yu-An Chung | Chenguang Zhu | Michael Zeng
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Spoken language understanding (SLU) requires a model to analyze input acoustic signal to understand its linguistic content and make predictions. To boost the models’ performance, various pre-training methods have been proposed to learn rich representations from large-scale unannotated speech and text. However, the inherent disparities between the two modalities necessitate a mutual analysis. In this paper, we propose a novel semi-supervised learning framework, SPLAT, to jointly pre-train the speech and language modules. Besides conducting a self-supervised masked language modeling task on the two individual modules using unpaired speech and text, SPLAT aligns representations from the two modules in a shared latent space using a small amount of paired speech and text. Thus, during fine-tuning, the speech module alone can produce representations carrying both acoustic information and contextual semantic knowledge of an input acoustic signal. Experimental results verify the effectiveness of our approach on various SLU tasks. For example, SPLAT improves the previous state-of-the-art performance on the Spoken SQuAD dataset by more than 10%.

pdf bib
MediaSum: A Large-scale Media Interview Dataset for Dialogue Summarization
Chenguang Zhu | Yang Liu | Jie Mei | Michael Zeng
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

This paper introduces MediaSum, a large-scale media interview dataset consisting of 463.6K transcripts with abstractive summaries. To create this dataset, we collect interview transcripts from NPR and CNN and employ the overview and topic descriptions as summaries. Compared with existing public corpora for dialogue summarization, our dataset is an order of magnitude larger and contains complex multi-party conversations from multiple domains. We conduct statistical analysis to demonstrate the unique positional bias exhibited in the transcripts of televised and radioed interviews. We also show that MediaSum can be used in transfer learning to improve a model’s performance on other dialogue summarization tasks.

2020

pdf bib
Mixed-Lingual Pre-training for Cross-lingual Summarization
Ruochen Xu | Chenguang Zhu | Yu Shi | Michael Zeng | Xuedong Huang
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing

Cross-lingual Summarization (CLS) aims at producing a summary in the target language for an article in the source language. Traditional solutions employ a two-step approach, i.e. translate -> summarize or summarize -> translate. Recently, end-to-end models have achieved better results, but these approaches are mostly limited by their dependence on large-scale labeled data. We propose a solution based on mixed-lingual pre-training that leverages both cross-lingual tasks such as translation and monolingual tasks like masked language models. Thus, our model can leverage the massive monolingual data to enhance its modeling of language. Moreover, the architecture has no task-specific components, which saves memory and increases optimization efficiency. We show in experiments that this pre-training scheme can effectively boost the performance of cross-lingual summarization. In NCLS dataset, our model achieves an improvement of 2.82 (English to Chinese) and 1.15 (Chinese to English) ROUGE-1 scores over state-of-the-art results.

pdf bib
Few-shot Natural Language Generation for Task-Oriented Dialog
Baolin Peng | Chenguang Zhu | Chunyuan Li | Xiujun Li | Jinchao Li | Michael Zeng | Jianfeng Gao
Findings of the Association for Computational Linguistics: EMNLP 2020

As a crucial component in task-oriented dialog systems, the Natural Language Generation (NLG) module converts a dialog act represented in a semantic form into a response in natural language. The success of traditional template-based or statistical models typically relies on heavily annotated data, which is infeasible for new domains. Therefore, it is pivotal for an NLG system to generalize well with limited labelled data in real applications. To this end, we present FewshotWOZ, the first NLG benchmark to simulate the few-shot learning setting in task-oriented dialog systems. Further, we develop the SC-GPT model. It is pre-trained on a large set of annotated NLG corpus to acquire the controllable generation ability, and fine-tuned with only a few domain-specific labels to adapt to new domains. Experiments on FewshotWOZ and the large Multi-Domain-WOZ datasets show that the proposed SC-GPT significantly outperforms existing methods, measured by various automatic metrics and human evaluations.

pdf bib
A Hierarchical Network for Abstractive Meeting Summarization with Cross-Domain Pretraining
Chenguang Zhu | Ruochen Xu | Michael Zeng | Xuedong Huang
Findings of the Association for Computational Linguistics: EMNLP 2020

With the abundance of automatic meeting transcripts, meeting summarization is of great interest to both participants and other parties. Traditional methods of summarizing meetings depend on complex multi-step pipelines that make joint optimization intractable. Meanwhile, there are a handful of deep neural models for text summarization and dialogue systems. However, the semantic structure and styles of meeting transcripts are quite different from articles and conversations. In this paper, we propose a novel abstractive summary network that adapts to the meeting scenario. We design a hierarchical structure to accommodate long meeting transcripts and a role vector to depict the difference among speakers. Furthermore, due to the inadequacy of meeting summary data, we pretrain the model on large-scale news summary data. Empirical results show that our model outperforms previous approaches in both automatic metrics and human evaluation. For example, on ICSI dataset, the ROUGE-1 score increases from 34.66% to 46.28%.

pdf bib
TED: A Pretrained Unsupervised Summarization Model with Theme Modeling and Denoising
Ziyi Yang | Chenguang Zhu | Robert Gmyr | Michael Zeng | Xuedong Huang | Eric Darve
Findings of the Association for Computational Linguistics: EMNLP 2020

Text summarization aims to extract essential information from a piece of text and transform the text into a concise version. Existing unsupervised abstractive summarization models leverage recurrent neural networks framework while the recently proposed transformer exhibits much more capability. Moreover, most of previous summarization models ignore abundant unlabeled corpora resources available for pretraining. In order to address these issues, we propose TED, a transformer-based unsupervised abstractive summarization system with pretraining on large-scale data. We first leverage the lead bias in news articles to pretrain the model on millions of unlabeled corpora. Next, we finetune TED on target domains through theme modeling and a denoising autoencoder to enhance the quality of generated summaries. Notably, TED outperforms all unsupervised abstractive baselines on NYT, CNN/DM and English Gigaword datasets with various document styles. Further analysis shows that the summaries generated by TED are highly abstractive, and each component in the objective function of TED is highly effective.

2019

pdf bib
SIM: A Slot-Independent Neural Model for Dialogue State Tracking
Chenguang Zhu | Michael Zeng | Xuedong Huang
Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue

Dialogue state tracking is an important component in task-oriented dialogue systems to identify users’ goals and requests as a dialogue proceeds. However, as most previous models are dependent on dialogue slots, the model complexity soars when the number of slots increases. In this paper, we put forward a slot-independent neural model (SIM) to track dialogue states while keeping the model complexity invariant to the number of dialogue slots. The model utilizes attention mechanisms between user utterance and system actions. SIM achieves state-of-the-art results on WoZ and DSTC2 tasks, with only 20% of the model size of previous models.

pdf bib
Multi-task Learning for Natural Language Generation in Task-Oriented Dialogue
Chenguang Zhu | Michael Zeng | Xuedong Huang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

In task-oriented dialogues, Natural Language Generation (NLG) is the final yet crucial step to produce user-facing system utterances. The result of NLG is directly related to the perceived quality and usability of a dialogue system. While most existing systems provide semantically correct responses given goals to present, they struggle to match the variation and fluency in the human language. In this paper, we propose a novel multi-task learning framework, NLG-LM, for natural language generation. In addition to generating high-quality responses conveying the required information, it also explicitly targets for naturalness in generated responses via an unconditioned language model. This can significantly improve the learning of style and variation in human language. Empirical results show that this multi-task learning framework outperforms previous models across multiple datasets. For example, it improves the previous best BLEU score on the E2E-NLG dataset by 2.2%, and on the Laptop dataset by 6.1%.