We address the problem of unsupervised abstractive summarization of collections of user generated reviews through self-supervision and control. We propose a self-supervised setup that considers an individual document as a target summary for a set of similar documents. This setting makes training simpler than previous approaches by relying only on standard log-likelihood loss and mainstream models. We address the problem of hallucinations through the use of control codes, to steer the generation towards more coherent and relevant summaries.
Les modèles neuronaux de type seq2seq manifestent d’étonnantes capacités de prédiction quand ils sont entraînés sur des données de taille suffisante. Cependant, ils échouent à généraliser de manière satisfaisante quand la tâche implique d’apprendre et de réutiliser des règles systématiques de composition et non d’apprendre simplement par imitation des exemples d’entraînement. Le jeu de données SCAN, constitué d’un ensemble de commandes en langage naturel associées à des séquences d’action, a été spécifiquement conçu pour évaluer les capacités des réseaux de neurones à apprendre ce type de généralisation compositionnelle. Dans cet article, nous nous proposons d’étudier la contribution d’informations syntaxiques sur les capacités de généralisation compositionnelle des réseaux de neurones seq2seq convolutifs.
Cet article propose d’analyser les apports d’un modèle de langue pré-entraîné de type BERT (bidirectional encoder representations from transformers) à l’analyse syntaxique en constituants discontinus en anglais (PTB, Penn Treebank). Pour cela, nous réalisons une comparaison des erreurs d’un analyseur syntaxique dans deux configurations (i) avec un accès à BERT affiné lors de l’apprentissage (ii) sans accès à BERT (modèle n’utilisant que les données d’entraînement). Cette comparaison s’appuie sur la construction d’une suite de tests que nous rendons publique. Nous annotons les phrases de la section de validation du Penn Treebank avec des informations sur les phénomènes syntaxiques à l’origine des discontinuités. Ces annotations nous permettent de réaliser une évaluation fine des capacités syntaxiques de l’analyseur pour chaque phénomène cible. Nous montrons que malgré l’apport de BERT à la qualité des analyses (jusqu’à 95 en F1 ), certains phénomènes complexes ne sont toujours pas analysés de manière satisfaisante.
Les modèles de langue pré-entraînés sont désormais indispensables pour obtenir des résultats à l’état-de-l’art dans de nombreuses tâches du TALN. Tirant avantage de l’énorme quantité de textes bruts disponibles, ils permettent d’extraire des représentations continues des mots, contextualisées au niveau de la phrase. L’efficacité de ces représentations pour résoudre plusieurs tâches de TALN a été démontrée récemment pour l’anglais. Dans cet article, nous présentons et partageons FlauBERT, un ensemble de modèles appris sur un corpus français hétérogène et de taille importante. Des modèles de complexité différente sont entraînés à l’aide du nouveau supercalculateur Jean Zay du CNRS. Nous évaluons nos modèles de langue sur diverses tâches en français (classification de textes, paraphrase, inférence en langage naturel, analyse syntaxique, désambiguïsation automatique) et montrons qu’ils surpassent souvent les autres approches sur le référentiel d’évaluation FLUE également présenté ici.
Language models have become a key step to achieve state-of-the art results in many different Natural Language Processing (NLP) tasks. Leveraging the huge amount of unlabeled texts nowadays available, they provide an efficient way to pre-train continuous word representations that can be fine-tuned for a downstream task, along with their contextualization at the sentence level. This has been widely demonstrated for English using contextualized representations (Dai and Le, 2015; Peters et al., 2018; Howard and Ruder, 2018; Radford et al., 2018; Devlin et al., 2019; Yang et al., 2019b). In this paper, we introduce and share FlauBERT, a model learned on a very large and heterogeneous French corpus. Models of different sizes are trained using the new CNRS (French National Centre for Scientific Research) Jean Zay supercomputer. We apply our French language models to diverse NLP tasks (text classification, paraphrasing, natural language inference, parsing, word sense disambiguation) and show that most of the time they outperform other pre-training approaches. Different versions of FlauBERT as well as a unified evaluation protocol for the downstream tasks, called FLUE (French Language Understanding Evaluation), are shared to the research community for further reproducible experiments in French NLP.
We introduce a novel transition system for discontinuous constituency parsing. Instead of storing subtrees in a stack –i.e. a data structure with linear-time sequential access– the proposed system uses a set of parsing items, with constant-time random access. This change makes it possible to construct any discontinuous constituency tree in exactly 4n–2 transitions for a sentence of length n. At each parsing step, the parser considers every item in the set to be combined with a focus item and to construct a new constituent in a bottom-up fashion. The parsing strategy is based on the assumption that most syntactic structures can be parsed incrementally and that the set –the memory of the parser– remains reasonably small on average. Moreover, we introduce a provably correct dynamic oracle for the new transition system, and present the first experiments in discontinuous constituency parsing using a dynamic oracle. Our parser obtains state-of-the-art results on three English and German discontinuous treebanks.
Lexicalized parsing models are based on the assumptions that (i) constituents are organized around a lexical head and (ii) bilexical statistics are crucial to solve ambiguities. In this paper, we introduce an unlexicalized transition-based parser for discontinuous constituency structures, based on a structure-label transition system and a bi-LSTM scoring system. We compare it with lexicalized parsing models in order to address the question of lexicalization in the context of discontinuous constituency parsing. Our experiments show that unlexicalized models systematically achieve higher results than lexicalized models, and provide additional empirical evidence that lexicalization is not necessary to achieve strong parsing results. Our best unlexicalized model sets a new state of the art on English and German discontinuous constituency treebanks. We further provide a per-phenomenon analysis of its errors on discontinuous constituents.
User-generated reviews of products or services provide valuable information to customers. However, it is often impossible to read each of the potentially thousands of reviews: it would therefore save valuable time to provide short summaries of their contents. We address opinion summarization, a multi-document summarization task, with an unsupervised abstractive summarization neural system. Our system is based on (i) a language model that is meant to encode reviews to a vector space, and to generate fluent sentences from the same vector space (ii) a clustering step that groups together reviews about the same aspects and allows the system to generate summary sentences focused on these aspects. Our experiments on the Oposum dataset empirically show the importance of the clustering step.
This article deals with adversarial attacks towards deep learning systems for Natural Language Processing (NLP), in the context of privacy protection. We study a specific type of attack: an attacker eavesdrops on the hidden representations of a neural text classifier and tries to recover information about the input text. Such scenario may arise in situations when the computation of a neural network is shared across multiple devices, e.g. some hidden representation is computed by a user’s device and sent to a cloud-based model. We measure the privacy of a hidden representation by the ability of an attacker to predict accurately specific private information from it and characterize the tradeoff between the privacy and the utility of neural representations. Finally, we propose several defense methods based on modified training objectives and show that they improve the privacy of neural representations.
Nous présentons de nouvelles instanciations de trois corpus arborés en constituants du français, où certains phénomènes syntaxiques à l’origine de dépendances à longue distance sont représentés directement à l’aide de constituants discontinus. Les arbres obtenus relèvent de formalismes grammaticaux légèrement sensibles au contexte (LCFRS). Nous montrons ensuite qu’il est possible d’analyser automatiquement de telles structures de manière efficace à condition de s’appuyer sur une méthode d’inférence approximative. Pour cela, nous présentons un analyseur syntaxique par transitions, qui réalise également l’analyse morphologique et l’étiquetage fonctionnel des mots de la phrase. Enfin, nos expériences montrent que la rareté des phénomènes concernés dans les données françaises pose des difficultés pour l’apprentissage et l’évaluation des structures discontinues.
Discourse parsing is an integral part of understanding information flow and argumentative structure in documents. Most previous research has focused on inducing and evaluating models from the English RST Discourse Treebank. However, discourse treebanks for other languages exist, including Spanish, German, Basque, Dutch and Brazilian Portuguese. The treebanks share the same underlying linguistic theory, but differ slightly in the way documents are annotated. In this paper, we present (a) a new discourse parser which is simpler, yet competitive (significantly better on 2/3 metrics) to state of the art for English, (b) a harmonization of discourse treebanks across languages, enabling us to present (c) what to the best of our knowledge are the first experiments on cross-lingual discourse parsing.
This article introduces a novel transition system for discontinuous lexicalized constituent parsing called SR-GAP. It is an extension of the shift-reduce algorithm with an additional gap transition. Evaluation on two German treebanks shows that SR-GAP outperforms the previous best transition-based discontinuous parser (Maier, 2015) by a large margin (it is notably twice as accurate on the prediction of discontinuous constituents), and is competitive with the state of the art (Fernández-González and Martins, 2015). As a side contribution, we adapt span features (Hall et al., 2014) to discontinuous parsing.
We introduce a constituency parser based on a bi-LSTM encoder adapted from recent work (Cross and Huang, 2016b; Kiperwasser and Goldberg, 2016), which can incorporate a lower level character biLSTM (Ballesteros et al., 2015; Plank et al., 2016). We model two important interfaces of constituency parsing with auxiliary tasks supervised at the word level: (i) part-of-speech (POS) and morphological tagging, (ii) functional label prediction. On the SPMRL dataset, our parser obtains above state-of-the-art results on constituency parsing without requiring either predicted POS or morphological tags, and outputs labelled dependency trees.
L’article traite de l’analyse syntaxique lexicalisée pour les grammaires de constituants. On se place dans le cadre de l’analyse par transitions. Les modèles statistiques généralement utilisés pour cette tâche s’appuient sur une représentation non structurée du lexique. Les mots du vocabulaire sont représentés par des symboles discrets sans liens entre eux. À la place, nous proposons d’utiliser des représentations denses du type plongements (embeddings) qui permettent de modéliser la similarité entre symboles, c’est-à-dire entre mots, entre parties du discours et entre catégories syntagmatiques. Nous proposons d’adapter le modèle statistique sous-jacent à ces nouvelles représentations. L’article propose une étude de 3 architectures neuronales de complexité croissante et montre que l’utilisation d’une couche cachée non-linéaire permet de tirer parti des informations données par les plongements.