Manikandan Ravikiran


2021

pdf bib
DOSA: Dravidian Code-Mixed Offensive Span Identification Dataset
Manikandan Ravikiran | Subbiah Annamalai
Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages

This paper presents the Dravidian Offensive Span Identification Dataset (DOSA) for under-resourced Tamil-English and Kannada-English code-mixed text. The dataset addresses the lack of code-mixed datasets with annotated offensive spans by extending annotations of existing code-mixed offensive language identification datasets. It provides span annotations for Tamil-English and Kannada-English code-mixed comments posted by users on YouTube social media. Overall the dataset consists of 4786 Tamil-English comments with 6202 annotated spans and 1097 Kannada-English comments with 1641 annotated spans, each annotated by two different annotators. We further present some of our baseline experimental results on the developed dataset, thereby eliciting research in under-resourced languages, leading to an essential step towards semi-automated content moderation in Dravidian languages. The dataset is available in https://github.com/teamdl-mlsg/DOSA

2020

pdf bib
Hitachi at SemEval-2020 Task 12: Offensive Language Identification with Noisy Labels Using Statistical Sampling and Post-Processing
Manikandan Ravikiran | Amin Ekant Muljibhai | Toshinori Miyoshi | Hiroaki Ozaki | Yuta Koreeda | Sakata Masayuki
Proceedings of the Fourteenth Workshop on Semantic Evaluation

In this paper, we present our participation in SemEval-2020 Task-12 Subtask-A (English Language) which focuses on offensive language identification from noisy labels. To this end, we developed a hybrid system with the BERT classifier trained with tweets selected using Statistical Sampling Algorithm (SA) and Post-Processed (PP) using an offensive wordlist. Our developed system achieved 34th position with Macro-averaged F1-score (Macro-F1) of 0.90913 over both offensive and non-offensive classes. We further show comprehensive results and error analysis to assist future research in offensive language identification with noisy labels.