Madian Khabsa


2021

pdf bib
On Unifying Misinformation Detection
Nayeon Lee | Belinda Z. Li | Sinong Wang | Pascale Fung | Hao Ma | Wen-tau Yih | Madian Khabsa
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

In this paper, we introduce UnifiedM2, a general-purpose misinformation model that jointly models multiple domains of misinformation with a single, unified setup. The model is trained to handle four tasks: detecting news bias, clickbait, fake news, and verifying rumors. By grouping these tasks together, UnifiedM2 learns a richer representation of misinformation, which leads to state-of-the-art or comparable performance across all tasks. Furthermore, we demonstrate that UnifiedM2’s learned representation is helpful for few-shot learning of unseen misinformation tasks/datasets and the model’s generalizability to unseen events.

pdf bib
On the Influence of Masking Policies in Intermediate Pre-training
Qinyuan Ye | Belinda Z. Li | Sinong Wang | Benjamin Bolte | Hao Ma | Wen-tau Yih | Xiang Ren | Madian Khabsa
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Current NLP models are predominantly trained through a two-stage “pre-train then fine-tune” pipeline. Prior work has shown that inserting an intermediate pre-training stage, using heuristic masking policies for masked language modeling (MLM), can significantly improve final performance. However, it is still unclear (1) in what cases such intermediate pre-training is helpful, (2) whether hand-crafted heuristic objectives are optimal for a given task, and (3) whether a masking policy designed for one task is generalizable beyond that task. In this paper, we perform a large-scale empirical study to investigate the effect of various masking policies in intermediate pre-training with nine selected tasks across three categories. Crucially, we introduce methods to automate the discovery of optimal masking policies via direct supervision or meta-learning. We conclude that the success of intermediate pre-training is dependent on appropriate pre-train corpus, selection of output format (i.e., masked spans or full sentence), and clear understanding of the role that MLM plays for the downstream task. In addition, we find our learned masking policies outperform the heuristic of masking named entities on TriviaQA, and policies learned from one task can positively transfer to other tasks in certain cases, inviting future research in this direction.

2020

pdf bib
Language Models as Fact Checkers?
Nayeon Lee | Belinda Z. Li | Sinong Wang | Wen-tau Yih | Hao Ma | Madian Khabsa
Proceedings of the Third Workshop on Fact Extraction and VERification (FEVER)

Recent work has suggested that language models (LMs) store both common-sense and factual knowledge learned from pre-training data. In this paper, we leverage this implicit knowledge to create an effective end-to-end fact checker using a solely a language model, without any external knowledge or explicit retrieval components. While previous work on extracting knowledge from LMs have focused on the task of open-domain question answering, to the best of our knowledge, this is the first work to examine the use of language models as fact checkers. In a closed-book setting, we show that our zero-shot LM approach outperforms a random baseline on the standard FEVER task, and that our finetuned LM compares favorably with standard baselines. Though we do not ultimately outperform methods which use explicit knowledge bases, we believe our exploration shows that this method is viable and has much room for exploration.

pdf bib
To Pretrain or Not to Pretrain: Examining the Benefits of Pretrainng on Resource Rich Tasks
Sinong Wang | Madian Khabsa | Hao Ma
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Pretraining NLP models with variants of Masked Language Model (MLM) objectives has recently led to a significant improvements on many tasks. This paper examines the benefits of pretrained models as a function of the number of training samples used in the downstream task. On several text classification tasks, we show that as the number of training examples grow into the millions, the accuracy gap between finetuning BERT-based model and training vanilla LSTM from scratch narrows to within 1%. Our findings indicate that MLM-based models might reach a diminishing return point as the supervised data size increases significantly.

2019

pdf bib
Keeping Notes: Conditional Natural Language Generation with a Scratchpad Encoder
Ryan Benmalek | Madian Khabsa | Suma Desu | Claire Cardie | Michele Banko
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

We introduce the Scratchpad Mechanism, a novel addition to the sequence-to-sequence (seq2seq) neural network architecture and demonstrate its effectiveness in improving the overall fluency of seq2seq models for natural language generation tasks. By enabling the decoder at each time step to write to all of the encoder output layers, Scratchpad can employ the encoder as a “scratchpad” memory to keep track of what has been generated so far and thereby guide future generation. We evaluate Scratchpad in the context of three well-studied natural language generation tasks — Machine Translation, Question Generation, and Text Summarization — and obtain state-of-the-art or comparable performance on standard datasets for each task. Qualitative assessments in the form of human judgements (question generation), attention visualization (MT), and sample output (summarization) provide further evidence of the ability of Scratchpad to generate fluent and expressive output.