Machel Reid


2021

pdf bib
Low-Resource Machine Translation Using Cross-Lingual Language Model Pretraining
Francis Zheng | Machel Reid | Edison Marrese-Taylor | Yutaka Matsuo
Proceedings of the First Workshop on Natural Language Processing for Indigenous Languages of the Americas

This paper describes UTokyo’s submission to the AmericasNLP 2021 Shared Task on machine translation systems for indigenous languages of the Americas. We present a low-resource machine translation system that improves translation accuracy using cross-lingual language model pretraining. Our system uses an mBART implementation of fairseq to pretrain on a large set of monolingual data from a diverse set of high-resource languages before finetuning on 10 low-resource indigenous American languages: Aymara, Bribri, Asháninka, Guaraní, Wixarika, Náhuatl, Hñähñu, Quechua, Shipibo-Konibo, and Rarámuri. On average, our system achieved BLEU scores that were 1.64 higher and chrF scores that were 0.0749 higher than the baseline.

pdf bib
LEWIS: Levenshtein Editing for Unsupervised Text Style Transfer
Machel Reid | Victor Zhong
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Subformer: Exploring Weight Sharing for Parameter Efficiency in Generative Transformers
Machel Reid | Edison Marrese-Taylor | Yutaka Matsuo
Findings of the Association for Computational Linguistics: EMNLP 2021

Transformers have shown improved performance when compared to previous architectures for sequence processing such as RNNs. Despite their sizeable performance gains, as recently suggested, the model is computationally expensive to train and with a high parameter budget. In light of this, we explore parameter-sharing methods in Transformers with a specific focus on generative models. We perform an analysis of different parameter sharing/reduction methods and develop the Subformer. Our model combines sandwich-style parameter sharing, which overcomes naive cross-layer parameter sharing in generative models, and self-attentive embedding factorization (SAFE). Experiments on machine translation, abstractive summarization and language modeling show that the Subformer can outperform the Transformer even when using significantly fewer parameters.

pdf bib
AfroMT: Pretraining Strategies and Reproducible Benchmarks for Translation of 8 African Languages
Machel Reid | Junjie Hu | Graham Neubig | Yutaka Matsuo
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Reproducible benchmarks are crucial in driving progress of machine translation research. However, existing machine translation benchmarks have been mostly limited to high-resource or well-represented languages. Despite an increasing interest in low-resource machine translation, there are no standardized reproducible benchmarks for many African languages, many of which are used by millions of speakers but have less digitized textual data. To tackle these challenges, we propose AfroMT, a standardized, clean, and reproducible machine translation benchmark for eight widely spoken African languages. We also develop a suite of analysis tools for system diagnosis taking into account the unique properties of these languages. Furthermore, we explore the newly considered case of low-resource focused pretraining and develop two novel data augmentation-based strategies, leveraging word-level alignment information and pseudo-monolingual data for pretraining multilingual sequence-to-sequence models. We demonstrate significant improvements when pretraining on 11 languages, with gains of up to 2 BLEU points over strong baselines. We also show gains of up to 12 BLEU points over cross-lingual transfer baselines in data-constrained scenarios. All code and pretrained models will be released as further steps towards larger reproducible benchmarks for African languages.

2020

pdf bib
VCDM: Leveraging Variational Bi-encoding and Deep Contextualized Word Representations for Improved Definition Modeling
Machel Reid | Edison Marrese-Taylor | Yutaka Matsuo
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

In this paper, we tackle the task of definition modeling, where the goal is to learn to generate definitions of words and phrases. Existing approaches for this task are discriminative, combining distributional and lexical semantics in an implicit rather than direct way. To tackle this issue we propose a generative model for the task, introducing a continuous latent variable to explicitly model the underlying relationship between a phrase used within a context and its definition. We rely on variational inference for estimation and leverage contextualized word embeddings for improved performance. Our approach is evaluated on four existing challenging benchmarks with the addition of two new datasets, “Cambridge” and the first non-English corpus “Robert”, which we release to complement our empirical study. Our Variational Contextual Definition Modeler (VCDM) achieves state-of-the-art performance in terms of automatic and human evaluation metrics, demonstrating the effectiveness of our approach.