Luyang Huang


2021

pdf bib
Efficient Attentions for Long Document Summarization
Luyang Huang | Shuyang Cao | Nikolaus Parulian | Heng Ji | Lu Wang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The quadratic computational and memory complexities of large Transformers have limited their scalability for long document summarization. In this paper, we propose Hepos, a novel efficient encoder-decoder attention with head-wise positional strides to effectively pinpoint salient information from the source. We further conduct a systematic study of existing efficient self-attentions. Combined with Hepos, we are able to process ten times more tokens than existing models that use full attentions. For evaluation, we present a new dataset, GovReport, with significantly longer documents and summaries. Results show that our models produce significantly higher ROUGE scores than competitive comparisons, including new state-of-the-art results on PubMed. Human evaluation also shows that our models generate more informative summaries with fewer unfaithful errors.

2020

pdf bib
Knowledge Graph-Augmented Abstractive Summarization with Semantic-Driven Cloze Reward
Luyang Huang | Lingfei Wu | Lu Wang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Sequence-to-sequence models for abstractive summarization have been studied extensively, yet the generated summaries commonly suffer from fabricated content, and are often found to be near-extractive. We argue that, to address these issues, the summarizer should acquire semantic interpretation over input, e.g., via structured representation, to allow the generation of more informative summaries. In this paper, we present ASGARD, a novel framework for Abstractive Summarization with Graph-Augmentation and semantic-driven RewarD. We propose the use of dual encoders—a sequential document encoder and a graph-structured encoder—to maintain the global context and local characteristics of entities, complementing each other. We further design a reward based on a multiple choice cloze test to drive the model to better capture entity interactions. Results show that our models produce significantly higher ROUGE scores than a variant without knowledge graph as input on both New York Times and CNN/Daily Mail datasets. We also obtain better or comparable performance compared to systems that are fine-tuned from large pretrained language models. Human judges further rate our model outputs as more informative and containing fewer unfaithful errors.

2019

pdf bib
An Entity-Driven Framework for Abstractive Summarization
Eva Sharma | Luyang Huang | Zhe Hu | Lu Wang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Abstractive summarization systems aim to produce more coherent and concise summaries than their extractive counterparts. Popular neural models have achieved impressive results for single-document summarization, yet their outputs are often incoherent and unfaithful to the input. In this paper, we introduce SENECA, a novel System for ENtity-drivEn Coherent Abstractive summarization framework that leverages entity information to generate informative and coherent abstracts. Our framework takes a two-step approach: (1) an entity-aware content selection module first identifies salient sentences from the input, then (2) an abstract generation module conducts cross-sentence information compression and abstraction to generate the final summary, which is trained with rewards to promote coherence, conciseness, and clarity. The two components are further connected using reinforcement learning. Automatic evaluation shows that our model significantly outperforms previous state-of-the-art based on ROUGE and our proposed coherence measures on New York Times and CNN/Daily Mail datasets. Human judges further rate our system summaries as more informative and coherent than those by popular summarization models.