Linlin Liu


2021

pdf bib
On the Effectiveness of Adapter-based Tuning for Pretrained Language Model Adaptation
Ruidan He | Linlin Liu | Hai Ye | Qingyu Tan | Bosheng Ding | Liying Cheng | Jiawei Low | Lidong Bing | Luo Si
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Adapter-based tuning has recently arisen as an alternative to fine-tuning. It works by adding light-weight adapter modules to a pretrained language model (PrLM) and only updating the parameters of adapter modules when learning on a downstream task. As such, it adds only a few trainable parameters per new task, allowing a high degree of parameter sharing. Prior studies have shown that adapter-based tuning often achieves comparable results to fine-tuning. However, existing work only focuses on the parameter-efficient aspect of adapter-based tuning while lacking further investigation on its effectiveness. In this paper, we study the latter. We first show that adapter-based tuning better mitigates forgetting issues than fine-tuning since it yields representations with less deviation from those generated by the initial PrLM. We then empirically compare the two tuning methods on several downstream NLP tasks and settings. We demonstrate that 1) adapter-based tuning outperforms fine-tuning on low-resource and cross-lingual tasks; 2) it is more robust to overfitting and less sensitive to changes in learning rates.

pdf bib
MulDA: A Multilingual Data Augmentation Framework for Low-Resource Cross-Lingual NER
Linlin Liu | Bosheng Ding | Lidong Bing | Shafiq Joty | Luo Si | Chunyan Miao
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Named Entity Recognition (NER) for low-resource languages is a both practical and challenging research problem. This paper addresses zero-shot transfer for cross-lingual NER, especially when the amount of source-language training data is also limited. The paper first proposes a simple but effective labeled sequence translation method to translate source-language training data to target languages and avoids problems such as word order change and entity span determination. With the source-language data as well as the translated data, a generation-based multilingual data augmentation method is introduced to further increase diversity by generating synthetic labeled data in multiple languages. These augmented data enable the language model based NER models to generalize better with both the language-specific features from the target-language synthetic data and the language-independent features from multilingual synthetic data. An extensive set of experiments were conducted to demonstrate encouraging cross-lingual transfer performance of the new research on a wide variety of target languages.

2020

pdf bib
DAGA: Data Augmentation with a Generation Approach for Low-resource Tagging Tasks
Bosheng Ding | Linlin Liu | Lidong Bing | Canasai Kruengkrai | Thien Hai Nguyen | Shafiq Joty | Luo Si | Chunyan Miao
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Data augmentation techniques have been widely used to improve machine learning performance as they facilitate generalization. In this work, we propose a novel augmentation method to generate high quality synthetic data for low-resource tagging tasks with language models trained on the linearized labeled sentences. Our method is applicable to both supervised and semi-supervised settings. For the supervised settings, we conduct extensive experiments on named entity recognition (NER), part of speech (POS) tagging and end-to-end target based sentiment analysis (E2E-TBSA) tasks. For the semi-supervised settings, we evaluate our method on the NER task under the conditions of given unlabeled data only and unlabeled data plus a knowledge base. The results show that our method can consistently outperform the baselines, particularly when the given gold training data are less.

2019

pdf bib
Hierarchical Pointer Net Parsing
Linlin Liu | Xiang Lin | Shafiq Joty | Simeng Han | Lidong Bing
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Transition-based top-down parsing with pointer networks has achieved state-of-the-art results in multiple parsing tasks, while having a linear time complexity. However, the decoder of these parsers has a sequential structure, which does not yield the most appropriate inductive bias for deriving tree structures. In this paper, we propose hierarchical pointer network parsers, and apply them to dependency and sentence-level discourse parsing tasks. Our results on standard benchmark datasets demonstrate the effectiveness of our approach, outperforming existing methods and setting a new state-of-the-art.