Lemao Liu


2021

pdf bib
Assessing Dialogue Systems with Distribution Distances
Jiannan Xiang | Yahui Liu | Deng Cai | Huayang Li | Defu Lian | Lemao Liu
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Enhancing the Open-Domain Dialogue Evaluation in Latent Space
Zhangming Chan | Lemao Liu | Juntao Li | Haisong Zhang | Dongyan Zhao | Shuming Shi | Rui Yan
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Segmenting Natural Language Sentences via Lexical Unit Analysis
Yangming Li | Lemao Liu | Shuming Shi
Findings of the Association for Computational Linguistics: EMNLP 2021

The span-based model enjoys great popularity in recent works of sequence segmentation. However, each of these methods suffers from its own defects, such as invalid predictions. In this work, we introduce a unified span-based model, lexical unit analysis (LUA), that addresses all these matters. Segmenting a lexical unit sequence involves two steps. Firstly, we embed every span by using the representations from a pretraining language model. Secondly, we define a score for every segmentation candidate and apply dynamic programming (DP) to extract the candidate with the maximum score. We have conducted extensive experiments on 3 tasks, (e.g., syntactic chunking), across 7 datasets. LUA has established new state-of-the-art performances on 6 of them. We have achieved even better results through incorporating label correlations.

pdf bib
A Pretraining Numerical Reasoning Model for Ordinal Constrained Question Answering on Knowledge Base
Yu Feng | Jing Zhang | Gaole He | Wayne Xin Zhao | Lemao Liu | Quan Liu | Cuiping Li | Hong Chen
Findings of the Association for Computational Linguistics: EMNLP 2021

Knowledge Base Question Answering (KBQA) is to answer natural language questions posed over knowledge bases (KBs). This paper targets at empowering the IR-based KBQA models with the ability of numerical reasoning for answering ordinal constrained questions. A major challenge is the lack of explicit annotations about numerical properties. To address this challenge, we propose a pretraining numerical reasoning model consisting of NumGNN and NumTransformer, guided by explicit self-supervision signals. The two modules are pretrained to encode the magnitude and ordinal properties of numbers respectively and can serve as model-agnostic plugins for any IR-based KBQA model to enhance its numerical reasoning ability. Extensive experiments on two KBQA benchmarks verify the effectiveness of our method to enhance the numerical reasoning ability for IR-based KBQA models.

pdf bib
Neural Sequence Segmentation as Determining the Leftmost Segments
Yangming Li | Lemao Liu | Kaisheng Yao
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Prior methods to text segmentation are mostly at token level. Despite the adequacy, this nature limits their full potential to capture the long-term dependencies among segments. In this work, we propose a novel framework that incrementally segments natural language sentences at segment level. For every step in segmentation, it recognizes the leftmost segment of the remaining sequence. Implementations involve LSTM-minus technique to construct the phrase representations and recurrent neural networks (RNN) to model the iterations of determining the leftmost segments. We have conducted extensive experiments on syntactic chunking and Chinese part-of-speech (POS) tagging across 3 datasets, demonstrating that our methods have significantly outperformed previous all baselines and achieved new state-of-the-art results. Moreover, qualitative analysis and the study on segmenting long-length sentences verify its effectiveness in modeling long-term dependencies.

pdf bib
Engage the Public: Poll Question Generation for Social Media Posts
Zexin Lu | Keyang Ding | Yuji Zhang | Jing Li | Baolin Peng | Lemao Liu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

This paper presents a novel task to generate poll questions for social media posts. It offers an easy way to hear the voice from the public and learn from their feelings to important social topics. While most related work tackles formal languages (e.g., exam papers), we generate poll questions for short and colloquial social media messages exhibiting severe data sparsity. To deal with that, we propose to encode user comments and discover latent topics therein as contexts. They are then incorporated into a sequence-to-sequence (S2S) architecture for question generation and its extension with dual decoders to additionally yield poll choices (answers). For experiments, we collect a large-scale Chinese dataset from Sina Weibo containing over 20K polls. The results show that our model outperforms the popular S2S models without exploiting topics from comments and the dual decoder design can further benefit the prediction of both questions and answers. Human evaluations further exhibit our superiority in yielding high-quality polls helpful to draw user engagements.

pdf bib
Fast and Accurate Neural Machine Translation with Translation Memory
Qiuxiang He | Guoping Huang | Qu Cui | Li Li | Lemao Liu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

It is generally believed that a translation memory (TM) should be beneficial for machine translation tasks. Unfortunately, existing wisdom demonstrates the superiority of TM-based neural machine translation (NMT) only on the TM-specialized translation tasks rather than general tasks, with a non-negligible computational overhead. In this paper, we propose a fast and accurate approach to TM-based NMT within the Transformer framework: the model architecture is simple and employs a single bilingual sentence as its TM, leading to efficient training and inference; and its parameters are effectively optimized through a novel training criterion. Extensive experiments on six TM-specialized tasks show that the proposed approach substantially surpasses several strong baselines that use multiple TMs, in terms of BLEU and running time. In particular, the proposed approach also advances the strong baselines on two general tasks (WMT news Zh->En and En->De).

pdf bib
GWLAN: General Word-Level AutocompletioN for Computer-Aided Translation
Huayang Li | Lemao Liu | Guoping Huang | Shuming Shi
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Computer-aided translation (CAT), the use of software to assist a human translator in the translation process, has been proven to be useful in enhancing the productivity of human translators. Autocompletion, which suggests translation results according to the text pieces provided by human translators, is a core function of CAT. There are two limitations in previous research in this line. First, most research works on this topic focus on sentence-level autocompletion (i.e., generating the whole translation as a sentence based on human input), but word-level autocompletion is under-explored so far. Second, almost no public benchmarks are available for the autocompletion task of CAT. This might be among the reasons why research progress in CAT is much slower compared to automatic MT. In this paper, we propose the task of general word-level autocompletion (GWLAN) from a real-world CAT scenario, and construct the first public benchmark to facilitate research in this topic. In addition, we propose an effective method for GWLAN and compare it with several strong baselines. Experiments demonstrate that our proposed method can give significantly more accurate predictions than the baseline methods on our benchmark datasets.

pdf bib
Neural Machine Translation with Monolingual Translation Memory
Deng Cai | Yan Wang | Huayang Li | Wai Lam | Lemao Liu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Prior work has proved that Translation Memory (TM) can boost the performance of Neural Machine Translation (NMT). In contrast to existing work that uses bilingual corpus as TM and employs source-side similarity search for memory retrieval, we propose a new framework that uses monolingual memory and performs learnable memory retrieval in a cross-lingual manner. Our framework has unique advantages. First, the cross-lingual memory retriever allows abundant monolingual data to be TM. Second, the memory retriever and NMT model can be jointly optimized for the ultimate translation goal. Experiments show that the proposed method obtains substantial improvements. Remarkably, it even outperforms strong TM-augmented NMT baselines using bilingual TM. Owning to the ability to leverage monolingual data, our model also demonstrates effectiveness in low-resource and domain adaptation scenarios.

pdf bib
TexSmart: A System for Enhanced Natural Language Understanding
Lemao Liu | Haisong Zhang | Haiyun Jiang | Yangming Li | Enbo Zhao | Kun Xu | Linfeng Song | Suncong Zheng | Botong Zhou | Dick Zhu | Xiao Feng | Tao Chen | Tao Yang | Dong Yu | Feng Zhang | ZhanHui Kang | Shuming Shi
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations

This paper introduces TexSmart, a text understanding system that supports fine-grained named entity recognition (NER) and enhanced semantic analysis functionalities. Compared to most previous publicly available text understanding systems and tools, TexSmart holds some unique features. First, the NER function of TexSmart supports over 1,000 entity types, while most other public tools typically support several to (at most) dozens of entity types. Second, TexSmart introduces new semantic analysis functions like semantic expansion and deep semantic representation, that are absent in most previous systems. Third, a spectrum of algorithms (from very fast algorithms to those that are relatively slow but more accurate) are implemented for one function in TexSmart, to fulfill the requirements of different academic and industrial applications. The adoption of unsupervised or weakly-supervised algorithms is especially emphasized, with the goal of easily updating our models to include fresh data with less human annotation efforts.

pdf bib
An Empirical Study on Multiple Information Sources for Zero-Shot Fine-Grained Entity Typing
Yi Chen | Haiyun Jiang | Lemao Liu | Shuming Shi | Chuang Fan | Min Yang | Ruifeng Xu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Auxiliary information from multiple sources has been demonstrated to be effective in zero-shot fine-grained entity typing (ZFET). However, there lacks a comprehensive understanding about how to make better use of the existing information sources and how they affect the performance of ZFET. In this paper, we empirically study three kinds of auxiliary information: context consistency, type hierarchy and background knowledge (e.g., prototypes and descriptions) of types, and propose a multi-source fusion model (MSF) targeting these sources. The performance obtains up to 11.42% and 22.84% absolute gains over state-of-the-art baselines on BBN and Wiki respectively with regard to macro F1 scores. More importantly, we further discuss the characteristics, merits and demerits of each information source and provide an intuitive understanding of the complementarity among them.

pdf bib
Fine-grained Entity Typing without Knowledge Base
Jing Qian | Yibin Liu | Lemao Liu | Yangming Li | Haiyun Jiang | Haisong Zhang | Shuming Shi
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Existing work on Fine-grained Entity Typing (FET) typically trains automatic models on the datasets obtained by using Knowledge Bases (KB) as distant supervision. However, the reliance on KB means this training setting can be hampered by the lack of or the incompleteness of the KB. To alleviate this limitation, we propose a novel setting for training FET models: FET without accessing any knowledge base. Under this setting, we propose a two-step framework to train FET models. In the first step, we automatically create pseudo data with fine-grained labels from a large unlabeled dataset. Then a neural network model is trained based on the pseudo data, either in an unsupervised way or using self-training under the weak guidance from a coarse-grained Named Entity Recognition (NER) model. Experimental results show that our method achieves competitive performance with respect to the models trained on the original KB-supervised datasets.

2020

pdf bib
Touch Editing: A Flexible One-Time Interaction Approach for Translation
Qian Wang | Jiajun Zhang | Lemao Liu | Guoping Huang | Chengqing Zong
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing

We propose a touch-based editing method for translation, which is more flexible than traditional keyboard-mouse-based translation postediting. This approach relies on touch actions that users perform to indicate translation errors. We present a dual-encoder model to handle the actions and generate refined translations. To mimic the user feedback, we adopt the TER algorithm comparing between draft translations and references to automatically extract the simulated actions for training data construction. Experiments on translation datasets with simulated editing actions show that our method significantly improves original translation of Transformer (up to 25.31 BLEU) and outperforms existing interactive translation methods (up to 16.64 BLEU). We also conduct experiments on post-editing dataset to further prove the robustness and effectiveness of our method.

pdf bib
On the Branching Bias of Syntax Extracted from Pre-trained Language Models
Huayang Li | Lemao Liu | Guoping Huang | Shuming Shi
Findings of the Association for Computational Linguistics: EMNLP 2020

Many efforts have been devoted to extracting constituency trees from pre-trained language models, often proceeding in two stages: feature definition and parsing. However, this kind of methods may suffer from the branching bias issue, which will inflate the performances on languages with the same branch it biases to. In this work, we propose quantitatively measuring the branching bias by comparing the performance gap on a language and its reversed language, which is agnostic to both language models and extracting methods. Furthermore, we analyze the impacts of three factors on the branching bias, namely feature definitions, parsing algorithms, and language models. Experiments show that several existing works exhibit branching biases, and some implementations of these three factors can introduce the branching bias.

pdf bib
Evaluating Explanation Methods for Neural Machine Translation
Jierui Li | Lemao Liu | Huayang Li | Guanlin Li | Guoping Huang | Shuming Shi
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Recently many efforts have been devoted to interpreting the black-box NMT models, but little progress has been made on metrics to evaluate explanation methods. Word Alignment Error Rate can be used as such a metric that matches human understanding, however, it can not measure explanation methods on those target words that are not aligned to any source word. This paper thereby makes an initial attempt to evaluate explanation methods from an alternative viewpoint. To this end, it proposes a principled metric based on fidelity in regard to the predictive behavior of the NMT model. As the exact computation for this metric is intractable, we employ an efficient approach as its approximation. On six standard translation tasks, we quantitatively evaluate several explanation methods in terms of the proposed metric and we reveal some valuable findings for these explanation methods in our experiments.

pdf bib
Regularized Context Gates on Transformer for Machine Translation
Xintong Li | Lemao Liu | Rui Wang | Guoping Huang | Max Meng
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Context gates are effective to control the contributions from the source and target contexts in the recurrent neural network (RNN) based neural machine translation (NMT). However, it is challenging to extend them into the advanced Transformer architecture, which is more complicated than RNN. This paper first provides a method to identify source and target contexts and then introduce a gate mechanism to control the source and target contributions in Transformer. In addition, to further reduce the bias problem in the gate mechanism, this paper proposes a regularization method to guide the learning of the gates with supervision automatically generated using pointwise mutual information. Extensive experiments on 4 translation datasets demonstrate that the proposed model obtains an averaged gain of 1.0 BLEU score over a strong Transformer baseline.

2019

pdf bib
On the Word Alignment from Neural Machine Translation
Xintong Li | Guanlin Li | Lemao Liu | Max Meng | Shuming Shi
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Prior researches suggest that neural machine translation (NMT) captures word alignment through its attention mechanism, however, this paper finds attention may almost fail to capture word alignment for some NMT models. This paper thereby proposes two methods to induce word alignment which are general and agnostic to specific NMT models. Experiments show that both methods induce much better word alignment than attention. This paper further visualizes the translation through the word alignment induced by NMT. In particular, it analyzes the effect of alignment errors on translation errors at word level and its quantitative analysis over many testing examples consistently demonstrate that alignment errors are likely to lead to translation errors measured by different metrics.

pdf bib
Understanding and Improving Hidden Representations for Neural Machine Translation
Guanlin Li | Lemao Liu | Xintong Li | Conghui Zhu | Tiejun Zhao | Shuming Shi
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Multilayer architectures are currently the gold standard for large-scale neural machine translation. Existing works have explored some methods for understanding the hidden representations, however, they have not sought to improve the translation quality rationally according to their understanding. Towards understanding for performance improvement, we first artificially construct a sequence of nested relative tasks and measure the feature generalization ability of the learned hidden representation over these tasks. Based on our understanding, we then propose to regularize the layer-wise representations with all tree-induced tasks. To overcome the computational bottleneck resulting from the large number of regularization terms, we design efficient approximation methods by selecting a few coarse-to-fine tasks for regularization. Extensive experiments on two widely-used datasets demonstrate the proposed methods only lead to small extra overheads in training but no additional overheads in testing, and achieve consistent improvements (up to +1.3 BLEU) compared to the state-of-the-art translation model.

pdf bib
Understanding Data Augmentation in Neural Machine Translation: Two Perspectives towards Generalization
Guanlin Li | Lemao Liu | Guoping Huang | Conghui Zhu | Tiejun Zhao
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Many Data Augmentation (DA) methods have been proposed for neural machine translation. Existing works measure the superiority of DA methods in terms of their performance on a specific test set, but we find that some DA methods do not exhibit consistent improvements across translation tasks. Based on the observation, this paper makes an initial attempt to answer a fundamental question: what benefits, which are consistent across different methods and tasks, does DA in general obtain? Inspired by recent theoretic advances in deep learning, the paper understands DA from two perspectives towards the generalization ability of a model: input sensitivity and prediction margin, which are defined independent of specific test set thereby may lead to findings with relatively low variance. Extensive experiments show that relatively consistent benefits across five DA methods and four translation tasks are achieved regarding both perspectives.

2018

pdf bib
Automatic Article Commenting: the Task and Dataset
Lianhui Qin | Lemao Liu | Wei Bi | Yan Wang | Xiaojiang Liu | Zhiting Hu | Hai Zhao | Shuming Shi
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Comments of online articles provide extended views and improve user engagement. Automatically making comments thus become a valuable functionality for online forums, intelligent chatbots, etc. This paper proposes the new task of automatic article commenting, and introduces a large-scale Chinese dataset with millions of real comments and a human-annotated subset characterizing the comments’ varying quality. Incorporating the human bias of comment quality, we further develop automatic metrics that generalize a broad set of popular reference-based metrics and exhibit greatly improved correlations with human evaluations.

pdf bib
Target Foresight Based Attention for Neural Machine Translation
Xintong Li | Lemao Liu | Zhaopeng Tu | Shuming Shi | Max Meng
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

In neural machine translation, an attention model is used to identify the aligned source words for a target word (target foresight word) in order to select translation context, but it does not make use of any information of this target foresight word at all. Previous work proposed an approach to improve the attention model by explicitly accessing this target foresight word and demonstrated the substantial gains in alignment task. However, this approach is useless in machine translation task on which the target foresight word is unavailable. In this paper, we propose a new attention model enhanced by the implicit information of target foresight word oriented to both alignment and translation tasks. Empirical experiments on Chinese-to-English and Japanese-to-English datasets show that the proposed attention model delivers significant improvements in terms of both alignment error rate and BLEU.

2017

pdf bib
Instance Weighting for Neural Machine Translation Domain Adaptation
Rui Wang | Masao Utiyama | Lemao Liu | Kehai Chen | Eiichiro Sumita
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Instance weighting has been widely applied to phrase-based machine translation domain adaptation. However, it is challenging to be applied to Neural Machine Translation (NMT) directly, because NMT is not a linear model. In this paper, two instance weighting technologies, i.e., sentence weighting and domain weighting with a dynamic weight learning strategy, are proposed for NMT domain adaptation. Empirical results on the IWSLT English-German/French tasks show that the proposed methods can substantially improve NMT performance by up to 2.7-6.7 BLEU points, outperforming the existing baselines by up to 1.6-3.6 BLEU points.

pdf bib
Neural Machine Translation with Source Dependency Representation
Kehai Chen | Rui Wang | Masao Utiyama | Lemao Liu | Akihiro Tamura | Eiichiro Sumita | Tiejun Zhao
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Source dependency information has been successfully introduced into statistical machine translation. However, there are only a few preliminary attempts for Neural Machine Translation (NMT), such as concatenating representations of source word and its dependency label together. In this paper, we propose a novel NMT with source dependency representation to improve translation performance of NMT, especially long sentences. Empirical results on NIST Chinese-to-English translation task show that our method achieves 1.6 BLEU improvements on average over a strong NMT system.

2016

pdf bib
Agreement on Target-bidirectional Neural Machine Translation
Lemao Liu | Masao Utiyama | Andrew Finch | Eiichiro Sumita
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

pdf bib
Target-Bidirectional Neural Models for Machine Transliteration
Andrew Finch | Lemao Liu | Xiaolin Wang | Eiichiro Sumita
Proceedings of the Sixth Named Entity Workshop

pdf bib
Neural Machine Translation with Supervised Attention
Lemao Liu | Masao Utiyama | Andrew Finch | Eiichiro Sumita
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

The attention mechanism is appealing for neural machine translation, since it is able to dynamically encode a source sentence by generating a alignment between a target word and source words. Unfortunately, it has been proved to be worse than conventional alignment models in alignment accuracy. In this paper, we analyze and explain this issue from the point view of reordering, and propose a supervised attention which is learned with guidance from conventional alignment models. Experiments on two Chinese-to-English translation tasks show that the supervised attention mechanism yields better alignments leading to substantial gains over the standard attention based NMT.

2015

pdf bib
Neural Network Transduction Models in Transliteration Generation
Andrew Finch | Lemao Liu | Xiaolin Wang | Eiichiro Sumita
Proceedings of the Fifth Named Entity Workshop

2014

pdf bib
Scalable Large-Margin Structured Learning: Theory and Algorithms
Liang Huang | Kai Zhao | Lemao Liu
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics: Tutorials

pdf bib
Search-Aware Tuning for Machine Translation
Lemao Liu | Liang Huang
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)

2013

pdf bib
Tuning SMT with a Large Number of Features via Online Feature Grouping
Lemao Liu | Tiejun Zhao | Taro Watanabe | Eiichiro Sumita
Proceedings of the Sixth International Joint Conference on Natural Language Processing

pdf bib
Additive Neural Networks for Statistical Machine Translation
Lemao Liu | Taro Watanabe | Eiichiro Sumita | Tiejun Zhao
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

2012

pdf bib
Locally Training the Log-Linear Model for SMT
Lemao Liu | Hailong Cao | Taro Watanabe | Tiejun Zhao | Mo Yu | Conghui Zhu
Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning

pdf bib
Expected Error Minimization with Ultraconservative Update for SMT
Lemao Liu | Tiejun Zhao | Taro Watanabe | Hailong Cao | Conghui Zhu
Proceedings of COLING 2012: Posters

2011

pdf bib
A Unified and Discriminative Soft Syntactic Constraint Model for Hierarchical Phrase-based Translation
Lemao Liu | Tiejun Zhao | Chao Wang | Hailong Cao
Proceedings of Machine Translation Summit XIII: Papers