In this paper we propose QACE, a new metric based on Question Answering for Caption Evaluation to evaluate image captioning based on Question Generation(QG) and Question Answering(QA) systems. QACE generates questions on the evaluated caption and check its content by asking the questions on either the reference caption or the source image. We first develop QACE_Ref that compares the answers of the evaluated caption to its reference, and report competitive results with the state-of-the-art metrics. To go further, we propose QACE_Img, that asks the questions directly on the image, instead of reference. A Visual-QA system is necessary for QACE_Img. Unfortunately, the standard VQA models are actually framed a classification among only few thousands categories. Instead, we propose Visual-T5, an abstractive VQA system. The resulting metric, QACE_Img is multi-modal, reference-less and explainable. Our experiments show that QACE_Img compares favorably w.r.t. other reference-less metrics.
Previous existing visual question answering (VQA) systems commonly use graph neural networks(GNNs) to extract visual relationships such as semantic relations or spatial relations. However, studies that use GNNs typically ignore the importance of each relation and simply concatenate outputs from multiple relation encoders. In this paper, we propose a novel layer architecture that fuses multiple visual relations through an attention mechanism to address this issue. Specifically, we develop a model that uses question embedding and joint embedding of the encoders to obtain dynamic attention weights with regard to the type of questions. Using the learnable attention weights, the proposed model can efficiently use the necessary visual relation features for a given question. Experimental results on the VQA 2.0 dataset demonstrate that the proposed model outperforms existing graph attention network-based architectures. Additionally, we visualize the attention weight and show that the proposed model assigns a higher weight to relations that are more relevant to the question.
In the automatic evaluation of generative question answering (GenQA) systems, it is difficult to assess the correctness of generated answers due to the free-form of the answer. Especially, widely used n-gram similarity metrics often fail to discriminate the incorrect answers since they equally consider all of the tokens. To alleviate this problem, we propose KPQA metric, a new metric for evaluating the correctness of GenQA. Specifically, our new metric assigns different weights to each token via keyphrase prediction, thereby judging whether a generated answer sentence captures the key meaning of the reference answer. To evaluate our metric, we create high-quality human judgments of correctness on two GenQA datasets. Using our human-evaluation datasets, we show that our proposed metric has a significantly higher correlation with human judgments than existing metrics in various datasets. Code for KPQA-metric will be available at https://github.com/hwanheelee1993/KPQA.
Despite the success of various text generation metrics such as BERTScore, it is still difficult to evaluate the image captions without enough reference captions due to the diversity of the descriptions. In this paper, we introduce a new metric UMIC, an Unreferenced Metric for Image Captioning which does not require reference captions to evaluate image captions. Based on Vision-and-Language BERT, we train UMIC to discriminate negative captions via contrastive learning. Also, we observe critical problems of the previous benchmark dataset (i.e., human annotations) on image captioning metric, and introduce a new collection of human annotations on the generated captions. We validate UMIC on four datasets, including our new dataset, and show that UMIC has a higher correlation than all previous metrics that require multiple references.
Context-aware neural machine translation (NMT) incorporates contextual information of surrounding texts, that can improve the translation quality of document-level machine translation. Many existing works on context-aware NMT have focused on developing new model architectures for incorporating additional contexts and have shown some promising results. However, most of existing works rely on cross-entropy loss, resulting in limited use of contextual information. In this paper, we propose CorefCL, a novel data augmentation and contrastive learning scheme based on coreference between the source and contextual sentences. By corrupting automatically detected coreference mentions in the contextual sentence, CorefCL can train the model to be sensitive to coreference inconsistency. We experimented with our method on common context-aware NMT models and two document-level translation tasks. In the experiments, our method consistently improved BLEU of compared models on English-German and English-Korean tasks. We also show that our method significantly improves coreference resolution in the English-German contrastive test suite.
Source-free domain adaptation is an emerging line of work in deep learning research since it is closely related to the real-world environment. We study the domain adaption in the sequence labeling problem where the model trained on the source domain data is given. We propose two methods: Self-Adapter and Selective Classifier Training. Self-Adapter is a training method that uses sentence-level pseudo-labels filtered by the self-entropy threshold to provide supervision to the whole model. Selective Classifier Training uses token-level pseudo-labels and supervises only the classification layer of the model. The proposed methods are evaluated on data provided by SemEval-2021 task 10 and Self-Adapter achieves 2nd rank performance.
In this paper, we propose an evaluation metric for image captioning systems using both image and text information. Unlike the previous methods that rely on textual representations in evaluating the caption, our approach uses visiolinguistic representations. The proposed method generates image-conditioned embeddings for each token using ViLBERT from both generated and reference texts. Then, these contextual embeddings from each of the two sentence-pair are compared to compute the similarity score. Experimental results on three benchmark datasets show that our method correlates significantly better with human judgments than all existing metrics.
In this study, we propose a novel graph neural network called propagate-selector (PS), which propagates information over sentences to understand information that cannot be inferred when considering sentences in isolation. First, we design a graph structure in which each node represents an individual sentence, and some pairs of nodes are selectively connected based on the text structure. Then, we develop an iterative attentive aggregation and a skip-combine method in which a node interacts with its neighborhood nodes to accumulate the necessary information. To evaluate the performance of the proposed approaches, we conduct experiments with the standard HotpotQA dataset. The empirical results demonstrate the superiority of our proposed approach, which obtains the best performances, compared to the widely used answer-selection models that do not consider the intersentential relationship.
Even though BERT has achieved successful performance improvements in various supervised learning tasks, BERT is still limited by repetitive inferences on unsupervised tasks for the computation of contextual language representations. To resolve this limitation, we propose a novel deep bidirectional language model called a Transformer-based Text Autoencoder (T-TA). The T-TA computes contextual language representations without repetition and displays the benefits of a deep bidirectional architecture, such as that of BERT. In computation time experiments in a CPU environment, the proposed T-TA performs over six times faster than the BERT-like model on a reranking task and twelve times faster on a semantic similarity task. Furthermore, the T-TA shows competitive or even better accuracies than those of BERT on the above tasks. Code is available at https://github.com/joongbo/tta.
While deep learning techniques have shown promising results in many natural language processing (NLP) tasks, it has not been widely applied to the clinical domain. The lack of large datasets and the pervasive use of domain-specific language (i.e. abbreviations and acronyms) in the clinical domain causes slower progress in NLP tasks than that of the general NLP tasks. To fill this gap, we employ word/subword-level based models that adopt large-scale data-driven methods such as pre-trained language models and transfer learning in analyzing text for the clinical domain. Empirical results demonstrate the superiority of the proposed methods by achieving 90.6% accuracy in medical domain natural language inference task. Furthermore, we inspect the independent strengths of the proposed approaches in quantitative and qualitative manners. This analysis will help researchers to select necessary components in building models for the medical domain.
This paper describes our system for SemEval-2019 Task 3: EmoContext, which aims to predict the emotion of the third utterance considering two preceding utterances in a dialogue. To address this challenge of predicting the emotion considering its context, we propose a Multi-View Turn-by-Turn (MVTT) model. Firstly, MVTT model generates vectors from each utterance using two encoders: word-level Bi-GRU encoder (WLE) and character-level CNN encoder (CLE). Then, MVTT grasps contextual information by combining the vectors and predict the emotion with the contextual information. We conduct experiments on the effect of vector encoding and vector combination. Our final MVTT model achieved 0.7634 microaveraged F1 score.
In this paper, we propose an attention-based classifier that predicts multiple emotions of a given sentence. Our model imitates human’s two-step procedure of sentence understanding and it can effectively represent and classify sentences. With emoji-to-meaning preprocessing and extra lexicon utilization, we further improve the model performance. We train and evaluate our model with data provided by SemEval-2018 task 1-5, each sentence of which has several labels among 11 given emotions. Our model achieves 5th/1st rank in English/Spanish respectively.
In this paper, we propose a novel end-to-end neural architecture for ranking candidate answers, that adapts a hierarchical recurrent neural network and a latent topic clustering module. With our proposed model, a text is encoded to a vector representation from an word-level to a chunk-level to effectively capture the entire meaning. In particular, by adapting the hierarchical structure, our model shows very small performance degradations in longer text comprehension while other state-of-the-art recurrent neural network models suffer from it. Additionally, the latent topic clustering module extracts semantic information from target samples. This clustering module is useful for any text related tasks by allowing each data sample to find its nearest topic cluster, thus helping the neural network model analyze the entire data. We evaluate our models on the Ubuntu Dialogue Corpus and consumer electronic domain question answering dataset, which is related to Samsung products. The proposed model shows state-of-the-art results for ranking question-answer pairs.
The context-dependent nature of online aggression makes annotating large collections of data extremely difficult. Previously studied datasets in abusive language detection have been insufficient in size to efficiently train deep learning models. Recently, Hate and Abusive Speech on Twitter, a dataset much greater in size and reliability, has been released. However, this dataset has not been comprehensively studied to its potential. In this paper, we conduct the first comparative study of various learning models on Hate and Abusive Speech on Twitter, and discuss the possibility of using additional features and context data for improvements. Experimental results show that bidirectional GRU networks trained on word-level features, with Latent Topic Clustering modules, is the most accurate model scoring 0.805 F1.