Kristian Nørgaard Jensen


2021

pdf bib
De-identification of Privacy-related Entities in Job Postings
Kristian Nørgaard Jensen | Mike Zhang | Barbara Plank
Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa)

De-identification is the task of detecting privacy-related entities in text, such as person names, emails and contact data. It has been well-studied within the medical domain. The need for de-identification technology is increasing, as privacy-preserving data handling is in high demand in many domains. In this paper, we focus on job postings. We present JobStack, a new corpus for de-identification of personal data in job vacancies on Stackoverflow. We introduce baselines, comparing Long-Short Term Memory (LSTM) and Transformer models. To improve these baselines, we experiment with BERT representations, and distantly related auxiliary data via multi-task learning. Our results show that auxiliary data helps to improve de-identification performance. While BERT representations improve performance, surprisingly “vanilla” BERT turned out to be more effective than BERT trained on Stackoverflow-related data.

2020

pdf bib
Buhscitu at SemEval-2020 Task 7: Assessing Humour in Edited News Headlines Using Hand-Crafted Features and Online Knowledge Bases
Kristian Nørgaard Jensen | Nicolaj Filrup Rasmussen | Thai Wang | Marco Placenti | Barbara Plank
Proceedings of the Fourteenth Workshop on Semantic Evaluation

This paper describes a system that aims at assessing humour intensity in edited news headlines as part of the 7th task of SemEval-2020 on “Humor, Emphasis and Sentiment”. Various factors need to be accounted for in order to assess the funniness of an edited headline. We propose an architecture that uses hand-crafted features, knowledge bases and a language model to understand humour, and combines them in a regression model. Our system outperforms two baselines. In general, automatic humour assessment remains a difficult task.

pdf bib
DaN+: Danish Nested Named Entities and Lexical Normalization
Barbara Plank | Kristian Nørgaard Jensen | Rob van der Goot
Proceedings of the 28th International Conference on Computational Linguistics

This paper introduces DAN+, a new multi-domain corpus and annotation guidelines for Dan-ish nested named entities (NEs) and lexical normalization to support research on cross-lingualcross-domain learning for a less-resourced language. We empirically assess three strategies tomodel the two-layer Named Entity Recognition (NER) task. We compare transfer capabilitiesfrom German versus in-language annotation from scratch. We examine language-specific versusmultilingual BERT, and study the effect of lexical normalization on NER. Our results show that 1) the most robust strategy is multi-task learning which is rivaled by multi-label decoding, 2) BERT-based NER models are sensitive to domain shifts, and 3) in-language BERT and lexicalnormalization are the most beneficial on the least canonical data. Our results also show that anout-of-domain setup remains challenging, while performance on news plateaus quickly. Thishighlights the importance of cross-domain evaluation of cross-lingual transfer.

2019

pdf bib
Cross-Domain Sentiment Classification using Vector Embedded Domain Representations
Nicolaj Filrup Rasmussen | Kristian Nørgaard Jensen | Marco Placenti | Thai Wang
Proceedings of the First NLPL Workshop on Deep Learning for Natural Language Processing

Due to the differences between reviews in different product categories, creating a general model for cross-domain sentiment classification can be a difficult task. This paper proposes an architecture that incorporates domain knowledge into a neural sentiment classification model. In addition to providing a cross-domain model, this also provides a quantifiable representation of the domains as numeric vectors. We show that it is possible to cluster the domain vectors and provide qualitative insights into the inter-domain relations. We also a) present a new data set for sentiment classification that includes a domain parameter and preprocessed data points, and b) perform an ablation study in order to determine whether some word groups impact performance.