Kiril Gashteovski


2020

pdf bib
On Aligning OpenIE Extractions with Knowledge Bases: A Case Study
Kiril Gashteovski | Rainer Gemulla | Bhushan Kotnis | Sven Hertling | Christian Meilicke
Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems

Open information extraction (OIE) is the task of extracting relations and their corresponding arguments from a natural language text in un- supervised manner. Outputs of such systems are used for downstream tasks such as ques- tion answering and automatic knowledge base (KB) construction. Many of these downstream tasks rely on aligning OIE triples with refer- ence KBs. Such alignments are usually eval- uated w.r.t. a specific downstream task and, to date, no direct manual evaluation of such alignments has been performed. In this paper, we directly evaluate how OIE triples from the OPIEC corpus are related to the DBpedia KB w.r.t. information content. First, we investigate OPIEC triples and DBpedia facts having the same arguments by comparing the information on the OIE surface relation with the KB rela- tion. Second, we evaluate the expressibility of general OPIEC triples in DBpedia. We in- vestigate whether—and, if so, how—a given OIE triple can be mapped to a single KB fact. We found that such mappings are not always possible because the information in the OIE triples tends to be more specific. Our evalua- tion suggests, however, that significant part of OIE triples can be expressed by means of KB formulas instead of individual facts.

pdf bib
Can We Predict New Facts with Open Knowledge Graph Embeddings? A Benchmark for Open Link Prediction
Samuel Broscheit | Kiril Gashteovski | Yanjie Wang | Rainer Gemulla
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Open Information Extraction systems extract (“subject text”, “relation text”, “object text”) triples from raw text. Some triples are textual versions of facts, i.e., non-canonicalized mentions of entities and relations. In this paper, we investigate whether it is possible to infer new facts directly from the open knowledge graph without any canonicalization or any supervision from curated knowledge. For this purpose, we propose the open link prediction task,i.e., predicting test facts by completing (“subject text”, “relation text”, ?) questions. An evaluation in such a setup raises the question if a correct prediction is actually a new fact that was induced by reasoning over the open knowledge graph or if it can be trivially explained. For example, facts can appear in different paraphrased textual variants, which can lead to test leakage. To this end, we propose an evaluation protocol and a methodology for creating the open link prediction benchmark OlpBench. We performed experiments with a prototypical knowledge graph embedding model for openlink prediction. While the task is very challenging, our results suggests that it is possible to predict genuinely new facts, which can not be trivially explained.

2017

pdf bib
MinIE: Minimizing Facts in Open Information Extraction
Kiril Gashteovski | Rainer Gemulla | Luciano del Corro
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

The goal of Open Information Extraction (OIE) is to extract surface relations and their arguments from natural-language text in an unsupervised, domain-independent manner. In this paper, we propose MinIE, an OIE system that aims to provide useful, compact extractions with high precision and recall. MinIE approaches these goals by (1) representing information about polarity, modality, attribution, and quantities with semantic annotations instead of in the actual extraction, and (2) identifying and removing parts that are considered overly specific. We conducted an experimental study with several real-world datasets and found that MinIE achieves competitive or higher precision and recall than most prior systems, while at the same time producing shorter, semantically enriched extractions.