Jun Huang


2021

pdf bib
Knowledge-Empowered Representation Learning for Chinese Medical Reading Comprehension: Task, Model and Resources
Taolin Zhang | Chengyu Wang | Minghui Qiu | Bite Yang | Zerui Cai | Xiaofeng He | Jun Huang
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Meta-KD: A Meta Knowledge Distillation Framework for Language Model Compression across Domains
Haojie Pan | Chengyu Wang | Minghui Qiu | Yichang Zhang | Yaliang Li | Jun Huang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Pre-trained language models have been applied to various NLP tasks with considerable performance gains. However, the large model sizes, together with the long inference time, limit the deployment of such models in real-time applications. One line of model compression approaches considers knowledge distillation to distill large teacher models into small student models. Most of these studies focus on single-domain only, which ignores the transferable knowledge from other domains. We notice that training a teacher with transferable knowledge digested across domains can achieve better generalization capability to help knowledge distillation. Hence we propose a Meta-Knowledge Distillation (Meta-KD) framework to build a meta-teacher model that captures transferable knowledge across domains and passes such knowledge to students. Specifically, we explicitly force the meta-teacher to capture transferable knowledge at both instance-level and feature-level from multiple domains, and then propose a meta-distillation algorithm to learn single-domain student models with guidance from the meta-teacher. Experiments on public multi-domain NLP tasks show the effectiveness and superiority of the proposed Meta-KD framework. Further, we also demonstrate the capability of Meta-KD in the settings where the training data is scarce.

pdf bib
TransPrompt: Towards an Automatic Transferable Prompting Framework for Few-shot Text Classification
Chengyu Wang | Jianing Wang | Minghui Qiu | Jun Huang | Ming Gao
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Recent studies have shown that prompts improve the performance of large pre-trained language models for few-shot text classification. Yet, it is unclear how the prompting knowledge can be transferred across similar NLP tasks for the purpose of mutual reinforcement. Based on continuous prompt embeddings, we propose TransPrompt, a transferable prompting framework for few-shot learning across similar tasks. In TransPrompt, we employ a multi-task meta-knowledge acquisition procedure to train a meta-learner that captures cross-task transferable knowledge. Two de-biasing techniques are further designed to make it more task-agnostic and unbiased towards any tasks. After that, the meta-learner can be adapted to target tasks with high accuracy. Extensive experiments show that TransPrompt outperforms single-task and cross-task strong baselines over multiple NLP tasks and datasets. We further show that the meta-learner can effectively improve the performance on previously unseen tasks; and TransPrompt also outperforms strong fine-tuning baselines when learning with full training sets.

pdf bib
Meta Distant Transfer Learning for Pre-trained Language Models
Chengyu Wang | Haojie Pan | Minghui Qiu | Jun Huang | Fei Yang | Yin Zhang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

With the wide availability of Pre-trained Language Models (PLMs), multi-task fine-tuning across domains has been extensively applied. For tasks related to distant domains with different class label sets, PLMs may memorize non-transferable knowledge for the target domain and suffer from negative transfer. Inspired by meta-learning, we propose the Meta Distant Transfer Learning (Meta-DTL) framework to learn the cross-task knowledge for PLM-based methods. Meta-DTL first employs task representation learning to mine implicit relations among multiple tasks and classes. Based on the results, it trains a PLM-based meta-learner to capture the transferable knowledge across tasks. The weighted maximum entropy regularizers are proposed to make meta-learner more task-agnostic and unbiased. Finally, the meta-learner can be fine-tuned to fit each task with better parameter initialization. We evaluate Meta-DTL using both BERT and ALBERT on seven public datasets. Experiment results confirm the superiority of Meta-DTL as it consistently outperforms strong baselines. We find that Meta-DTL is highly effective when very few data is available for the target task.

2020

pdf bib
Meta Fine-Tuning Neural Language Models for Multi-Domain Text Mining
Chengyu Wang | Minghui Qiu | Jun Huang | Xiaofeng He
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Pre-trained neural language models bring significant improvement for various NLP tasks, by fine-tuning the models on task-specific training sets. During fine-tuning, the parameters are initialized from pre-trained models directly, which ignores how the learning process of similar NLP tasks in different domains is correlated and mutually reinforced. In this paper, we propose an effective learning procedure named Meta Fine-Tuning (MFT), serving as a meta-learner to solve a group of similar NLP tasks for neural language models. Instead of simply multi-task training over all the datasets, MFT only learns from typical instances of various domains to acquire highly transferable knowledge. It further encourages the language model to encode domain-invariant representations by optimizing a series of novel domain corruption loss functions. After MFT, the model can be fine-tuned for each domain with better parameter initializations and higher generalization ability. We implement MFT upon BERT to solve several multi-domain text mining tasks. Experimental results confirm the effectiveness of MFT and its usefulness for few-shot learning.

2018

pdf bib
Transfer Learning for Context-Aware Question Matching in Information-seeking Conversations in E-commerce
Minghui Qiu | Liu Yang | Feng Ji | Wei Zhou | Jun Huang | Haiqing Chen | Bruce Croft | Wei Lin
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Building multi-turn information-seeking conversation systems is an important and challenging research topic. Although several advanced neural text matching models have been proposed for this task, they are generally not efficient for industrial applications. Furthermore, they rely on a large amount of labeled data, which may not be available in real-world applications. To alleviate these problems, we study transfer learning for multi-turn information seeking conversations in this paper. We first propose an efficient and effective multi-turn conversation model based on convolutional neural networks. After that, we extend our model to adapt the knowledge learned from a resource-rich domain to enhance the performance. Finally, we deployed our model in an industrial chatbot called AliMe Assist and observed a significant improvement over the existing online model.

2017

pdf bib
AliMe Chat: A Sequence to Sequence and Rerank based Chatbot Engine
Minghui Qiu | Feng-Lin Li | Siyu Wang | Xing Gao | Yan Chen | Weipeng Zhao | Haiqing Chen | Jun Huang | Wei Chu
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

We propose AliMe Chat, an open-domain chatbot engine that integrates the joint results of Information Retrieval (IR) and Sequence to Sequence (Seq2Seq) based generation models. AliMe Chat uses an attentive Seq2Seq based rerank model to optimize the joint results. Extensive experiments show our engine outperforms both IR and generation based models. We launch AliMe Chat for a real-world industrial application and observe better results than another public chatbot.

2005

pdf bib
Sehda S2MT: Incorporation of Syntax into Statistical Translation System
Yookyung Kim | Jun Huang | Youssef Billawala | Demitrios Master | Farzad Ehsani
Proceedings of the Second International Workshop on Spoken Language Translation