John Ortega


2021

pdf bib
Findings of the AmericasNLP 2021 Shared Task on Open Machine Translation for Indigenous Languages of the Americas
Manuel Mager | Arturo Oncevay | Abteen Ebrahimi | John Ortega | Annette Rios | Angela Fan | Ximena Gutierrez-Vasques | Luis Chiruzzo | Gustavo Giménez-Lugo | Ricardo Ramos | Ivan Vladimir Meza Ruiz | Rolando Coto-Solano | Alexis Palmer | Elisabeth Mager-Hois | Vishrav Chaudhary | Graham Neubig | Ngoc Thang Vu | Katharina Kann
Proceedings of the First Workshop on Natural Language Processing for Indigenous Languages of the Americas

This paper presents the results of the 2021 Shared Task on Open Machine Translation for Indigenous Languages of the Americas. The shared task featured two independent tracks, and participants submitted machine translation systems for up to 10 indigenous languages. Overall, 8 teams participated with a total of 214 submissions. We provided training sets consisting of data collected from various sources, as well as manually translated sentences for the development and test sets. An official baseline trained on this data was also provided. Team submissions featured a variety of architectures, including both statistical and neural models, and for the majority of languages, many teams were able to considerably improve over the baseline. The best performing systems achieved 12.97 ChrF higher than baseline, when averaged across languages.

pdf bib
Proceedings of the 4th Workshop on Technologies for MT of Low Resource Languages (LoResMT2021)
John Ortega | Atul Kr. Ojha | Katharina Kann | Chao-Hong Liu
Proceedings of the 4th Workshop on Technologies for MT of Low Resource Languages (LoResMT2021)

pdf bib
Findings of the LoResMT 2021 Shared Task on COVID and Sign Language for Low-resource Languages
Atul Kr. Ojha | Chao-Hong Liu | Katharina Kann | John Ortega | Sheetal Shatam | Theodorus Fransen
Proceedings of the 4th Workshop on Technologies for MT of Low Resource Languages (LoResMT2021)

We present the findings of the LoResMT 2021 shared task which focuses on machine translation (MT) of COVID-19 data for both low-resource spoken and sign languages. The organization of this task was conducted as part of the fourth workshop on technologies for machine translation of low resource languages (LoResMT). Parallel corpora is presented and publicly available which includes the following directions: English↔Irish, English↔Marathi, and Taiwanese Sign language↔Traditional Chinese. Training data consists of 8112, 20933 and 128608 segments, respectively. There are additional monolingual data sets for Marathi and English that consist of 21901 segments. The results presented here are based on entries from a total of eight teams. Three teams submitted systems for English↔Irish while five teams submitted systems for English↔Marathi. Unfortunately, there were no systems submissions for the Taiwanese Sign language↔Traditional Chinese task. Maximum system performance was computed using BLEU and follow as 36.0 for English–Irish, 34.6 for Irish–English, 24.2 for English–Marathi, and 31.3 for Marathi–English.

2020

pdf bib
Proceedings of the 3rd Workshop on Technologies for MT of Low Resource Languages
Alina Karakanta | Atul Kr. Ojha | Chao-Hong Liu | Jade Abbott | John Ortega | Jonathan Washington | Nathaniel Oco | Surafel Melaku Lakew | Tommi A Pirinen | Valentin Malykh | Varvara Logacheva | Xiaobing Zhao
Proceedings of the 3rd Workshop on Technologies for MT of Low Resource Languages

2019

pdf bib
Improving Translations by Combining Fuzzy-Match Repair with Automatic Post-Editing
John Ortega | Felipe Sánchez-Martínez | Marco Turchi | Matteo Negri
Proceedings of Machine Translation Summit XVII: Research Track

2018

pdf bib
A Comparison of Machine Translation Paradigms for Use in Black-Box Fuzzy-Match Repair
Rebecca Knowles | John Ortega | Philipp Koehn
Proceedings of the AMTA 2018 Workshop on Translation Quality Estimation and Automatic Post-Editing

pdf bib
Using Morphemes from Agglutinative Languages like Quechua and Finnish to Aid in Low-Resource Translation
John Ortega | Krishnan Pillaipakkamnatt
Proceedings of the AMTA 2018 Workshop on Technologies for MT of Low Resource Languages (LoResMT 2018)

2016

pdf bib
Fuzzy-match repair using black-box machine translation systems: what can be expected?
John Ortega | Felipe Sánchez-Martínez | Mikel Forcada
Conferences of the Association for Machine Translation in the Americas: MT Researchers' Track

Computer-aided translation (CAT) tools often use a translation memory (TM) as the key resource to assist translators. A TM contains translation units (TU) which are made up of source and target language segments; translators use the target segments in the TU suggested by the CAT tool by converting them into the desired translation. Proposals from TMs could be made more useful by using techniques such as fuzzy-match repair (FMR) which modify words in the target segment corresponding to mismatches identified in the source segment. Modifications in the target segment are done by translating the mismatched source sub-segments using an external source of bilingual information (SBI) and applying the translations to the corresponding positions in the target segment. Several combinations of translated sub-segments can be applied to the target segment which can produce multiple repair candidates. We provide a formal algorithmic description of a method that is capable of using any SBI to generate all possible fuzzy-match repairs and perform an oracle evaluation on three different language pairs to ascertain the potential of the method to improve translation productivity. Using DGT-TM translation memories and the machine system Apertium as the single source to build repair operators in three different language pairs, we show that the best repaired fuzzy matches are consistently closer to reference translations than either machine-translated segments or unrepaired fuzzy matches.