Jingsong Yu


2020

pdf bib
Joint Intent Detection and Entity Linking on Spatial Domain Queries
Lei Zhang | Runze Wang | Jingbo Zhou | Jingsong Yu | Zhenhua Ling | Hui Xiong
Findings of the Association for Computational Linguistics: EMNLP 2020

Continuous efforts have been devoted to language understanding (LU) for conversational queries with the fast and wide-spread popularity of voice assistants. In this paper, we first study the LU problem in the spatial domain, which is a critical problem for providing location-based services by voice assistants but is without in-depth investigation in existing studies. Spatial domain queries have several unique properties making them be more challenging for language understanding than common conversational queries, including lexical-similar but diverse intents and highly ambiguous words. Thus, a special tailored LU framework for spatial domain queries is necessary. To the end, a dataset was extracted and annotated based on the real-life queries from a voice assistant service. We then proposed a new multi-task framework that jointly learns the intent detection and entity linking tasks on the with invented hierarchical intent detection method and triple-scoring mechanism for entity linking. A specially designed spatial GCN is also utilized to model spatial context information among entities. We have conducted extensive experimental evaluations with state-of-the-art entity linking and intent detection methods, which demonstrated that can outperform all baselines with a significant margin.

2019

pdf bib
Unsupervised Context Rewriting for Open Domain Conversation
Kun Zhou | Kai Zhang | Yu Wu | Shujie Liu | Jingsong Yu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Context modeling has a pivotal role in open domain conversation. Existing works either use heuristic methods or jointly learn context modeling and response generation with an encoder-decoder framework. This paper proposes an explicit context rewriting method, which rewrites the last utterance by considering context history. We leverage pseudo-parallel data and elaborate a context rewriting network, which is built upon the CopyNet with the reinforcement learning method. The rewritten utterance is beneficial to candidate retrieval, explainable context modeling, as well as enabling to employ a single-turn framework to the multi-turn scenario. The empirical results show that our model outperforms baselines in terms of the rewriting quality, the multi-turn response generation, and the end-to-end retrieval-based chatbots.

pdf bib
Improving the Robustness of Deep Reading Comprehension Models by Leveraging Syntax Prior
Bowen Wu | Haoyang Huang | Zongsheng Wang | Qihang Feng | Jingsong Yu | Baoxun Wang
Proceedings of the 2nd Workshop on Machine Reading for Question Answering

Despite the remarkable progress on Machine Reading Comprehension (MRC) with the help of open-source datasets, recent studies indicate that most of the current MRC systems unfortunately suffer from weak robustness against adversarial samples. To address this issue, we attempt to take sentence syntax as the leverage in the answer predicting process which previously only takes account of phrase-level semantics. Furthermore, to better utilize the sentence syntax and improve the robustness, we propose a Syntactic Leveraging Network, which is designed to deal with adversarial samples by exploiting the syntactic elements of a question. The experiment results indicate that our method is promising for improving the generalization and robustness of MRC models against the influence of adversarial samples, with performance well-maintained.