Jiaqi Zeng


2021

pdf bib
Uncovering Main Causalities for Long-tailed Information Extraction
Guoshun Nan | Jiaqi Zeng | Rui Qiao | Zhijiang Guo | Wei Lu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Information Extraction (IE) aims to extract structural information from unstructured texts. In practice, long-tailed distributions caused by the selection bias of a dataset may lead to incorrect correlations, also known as spurious correlations, between entities and labels in the conventional likelihood models. This motivates us to propose counterfactual IE (CFIE), a novel framework that aims to uncover the main causalities behind data in the view of causal inference. Specifically, 1) we first introduce a unified structural causal model (SCM) for various IE tasks, describing the relationships among variables; 2) with our SCM, we then generate counterfactuals based on an explicit language structure to better calculate the direct causal effect during the inference stage; 3) we further propose a novel debiasing approach to yield more robust predictions. Experiments on three IE tasks across five public datasets show the effectiveness of our CFIE model in mitigating the spurious correlation issues.

2020

pdf bib
MedDialog: Large-scale Medical Dialogue Datasets
Guangtao Zeng | Wenmian Yang | Zeqian Ju | Yue Yang | Sicheng Wang | Ruisi Zhang | Meng Zhou | Jiaqi Zeng | Xiangyu Dong | Ruoyu Zhang | Hongchao Fang | Penghui Zhu | Shu Chen | Pengtao Xie
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Medical dialogue systems are promising in assisting in telemedicine to increase access to healthcare services, improve the quality of patient care, and reduce medical costs. To facilitate the research and development of medical dialogue systems, we build large-scale medical dialogue datasets – MedDialog, which contain 1) a Chinese dataset with 3.4 million conversations between patients and doctors, 11.3 million utterances, 660.2 million tokens, covering 172 specialties of diseases, and 2) an English dataset with 0.26 million conversations, 0.51 million utterances, 44.53 million tokens, covering 96 specialties of diseases. To our best knowledge, MedDialog is the largest medical dialogue dataset to date. We pretrain several dialogue generation models on the Chinese MedDialog dataset, including Transformer, GPT, BERT-GPT, and compare their performance. It is shown that models trained on MedDialog are able to generate clinically correct and doctor-like medical dialogues. We also study the transferability of models trained on MedDialog to low-resource medical dialogue generation tasks. It is shown that via transfer learning which finetunes the models pretrained on MedDialog, the performance on medical dialogue generation tasks with small datasets can be greatly improved, as shown in human evaluation and automatic evaluation. The datasets and code are available at https://github.com/UCSD-AI4H/Medical-Dialogue-System