The state-of-the-art abusive language detection models report great in-corpus performance, but underperform when evaluated on abusive comments that differ from the training scenario. As human annotation involves substantial time and effort, models that can adapt to newly collected comments can prove to be useful. In this paper, we investigate the effectiveness of several Unsupervised Domain Adaptation (UDA) approaches for the task of cross-corpora abusive language detection. In comparison, we adapt a variant of the BERT model, trained on large-scale abusive comments, using Masked Language Model (MLM) fine-tuning. Our evaluation shows that the UDA approaches result in sub-optimal performance, while the MLM fine-tuning does better in the cross-corpora setting. Detailed analysis reveals the limitations of the UDA approaches and emphasizes the need to build efficient adaptation methods for this task.
Rapidly changing social media content calls for robust and generalisable abuse detection models. However, the state-of-the-art supervised models display degraded performance when they are evaluated on abusive comments that differ from the training corpus. We investigate if the performance of supervised models for cross-corpora abuse detection can be improved by incorporating additional information from topic models, as the latter can infer the latent topic mixtures from unseen samples. In particular, we combine topical information with representations from a model tuned for classifying abusive comments. Our performance analysis reveals that topic models are able to capture abuse-related topics that can transfer across corpora, and result in improved generalisability.
The spectacular expansion of the Internet has led to the development of a new research problem in the field of natural language processing: automatic toxic comment detection, since many countries prohibit hate speech in public media. There is no clear and formal definition of hate, offensive, toxic and abusive speeches. In this article, we put all these terms under the umbrella of “toxic speech”. The contribution of this paper is the design of binary classification and regression-based approaches aiming to predict whether a comment is toxic or not. We compare different unsupervised word representations and different DNN based classifiers. Moreover, we study the robustness of the proposed approaches to adversarial attacks by adding one (healthy or toxic) word. We evaluate the proposed methodology on the English Wikipedia Detox corpus. Our experiments show that using BERT fine-tuning outperforms feature-based BERT, Mikolov’s and fastText representations with different DNN classifiers.
Dans cet article nous proposons une méthode d’adaptation du lexique, destinée à améliorer les systèmes de la reconnaissance automatique de la parole (SRAP) des locuteurs non natifs. En effet, la reconnaissance automatique souffre d’une chute significative de ses performances quand elle est utilisée pour reconnaître la parole des locuteurs non natifs, car les phonèmes de la langue étrangère sont fréquemment mal prononcés par ces locuteurs. Pour prendre en compte ce problème de prononciations erronées, notre approche propose d’intégrer les prononciations non natives dans le lexique et par la suite d’utiliser ce lexique enrichi pour la reconnaissance. Pour réaliser notre approche nous avons besoin d’un petit corpus de parole non native et de sa transcription. Pour générer les prononciations non natives, nous proposons de tenir compte des correspondances graphèmes-phonèmes en vue de générer de manière automatique des règles de création de nouvelles prononciations. Ces nouvelles prononciations seront ajoutées au lexique. Nous présentons une évaluation de notre méthode sur un corpus de locuteurs non natifs français s’exprimant en anglais.
Les systèmes automatiques d’identification de la langue subissent une dégradation importante de leurs performances quand les caractéristiques acoustiques des signaux de test diffèrent fortement des caractéristiques des données d’entraînement. Dans cet article, nous étudions l’adaptation de domaine non supervisée d’un système entraîné sur des conversations téléphoniques à des transmissions radio. Nous présentons une méthode de régularisation d’un réseau de neurones consistant à ajouter à la fonction de coût un terme mesurant la divergence entre les deux domaines. Des expériences sur le corpus OpenSAD15 nous permettent de sélectionner la Maximum Mean Discrepancy pour réaliser cette mesure. Cette approche est ensuite appliquée à un système moderne d’identification de la langue reposant sur des x-vectors. Sur le corpus RATS, pour sept des huit canaux radio étudiés, l’approche permet, sans utiliser de données annotées du domaine cible, de surpasser la performance d’un système entraîné de façon supervisée avec des données annotées de ce domaine.
Malgré les avancés spectaculaires ces dernières années, les systèmes de Reconnaissance Automatique de Parole (RAP) commettent encore des erreurs, surtout dans des environnements bruités. Pour améliorer la RAP, nous proposons de se diriger vers une contextualisation d’un système RAP, car les informations sémantiques sont importantes pour la performance de la RAP. Les systèmes RAP actuels ne prennent en compte principalement que les informations lexicales et syntaxiques. Pour modéliser les informations sémantiques, nous proposons de détecter les mots de la phrase traitée qui pourraient avoir été mal reconnus et de proposer des mots correspondant mieux au contexte. Cette analyse sémantique permettra de réévaluer les N meilleures hypothèses de transcription (N-best). Nous utilisons les embeddings Word2Vec et BERT. Nous avons évalué notre méthodologie sur le corpus des conférences TED (TED-LIUM). Les résultats montrent une amélioration significative du taux d’erreur mots en utilisant la méthodologie proposée.
Research on hate speech classification has received increased attention. In real-life scenarios, a small amount of labeled hate speech data is available to train a reliable classifier. Semi-supervised learning takes advantage of a small amount of labeled data and a large amount of unlabeled data. In this paper, label propagation-based semi-supervised learning is explored for the task of hate speech classification. The quality of labeling the unlabeled set depends on the input representations. In this work, we show that pre-trained representations are label agnostic, and when used with label propagation yield poor results. Neural network-based fine-tuning can be adopted to learn task-specific representations using a small amount of labeled data. We show that fully fine-tuned representations may not always be the best representations for the label propagation and intermediate representations may perform better in a semi-supervised setup.
Out-Of-Vocabulary (OOV) words missed by Large Vocabulary Continuous Speech Recognition (LVCSR) systems can be recovered with the help of topic and semantic context of the OOV words captured from a diachronic text corpus. In this paper we investigate how the choice of documents for the diachronic text corpora affects the retrieval of OOV Proper Names (PNs) relevant to an audio document. We first present our diachronic French broadcast news datasets, which highlight the motivation of our study on OOV PNs. Then the effect of using diachronic text data from different sources and a different time span is analysed. With OOV PN retrieval experiments on French broadcast news videos, we conclude that a diachronic corpus with text from different sources leads to better retrieval performance than one relying on text from single source or from a longer time span.