Ireneusz Gawlik


2021

pdf bib
HerBERT: Efficiently Pretrained Transformer-based Language Model for Polish
Robert Mroczkowski | Piotr Rybak | Alina Wróblewska | Ireneusz Gawlik
Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing

BERT-based models are currently used for solving nearly all Natural Language Processing (NLP) tasks and most often achieve state-of-the-art results. Therefore, the NLP community conducts extensive research on understanding these models, but above all on designing effective and efficient training procedures. Several ablation studies investigating how to train BERT-like models have been carried out, but the vast majority of them concerned only the English language. A training procedure designed for English does not have to be universal and applicable to other especially typologically different languages. Therefore, this paper presents the first ablation study focused on Polish, which, unlike the isolating English language, is a fusional language. We design and thoroughly evaluate a pretraining procedure of transferring knowledge from multilingual to monolingual BERT-based models. In addition to multilingual model initialization, other factors that possibly influence pretraining are also explored, i.e. training objective, corpus size, BPE-Dropout, and pretraining length. Based on the proposed procedure, a Polish BERT-based language model – HerBERT – is trained. This model achieves state-of-the-art results on multiple downstream tasks.

2020

pdf bib
BERT-based similarity learning for product matching
Janusz Tracz | Piotr Iwo Wójcik | Kalina Jasinska-Kobus | Riccardo Belluzzo | Robert Mroczkowski | Ireneusz Gawlik
Proceedings of Workshop on Natural Language Processing in E-Commerce

Product matching, i.e., being able to infer the product being sold for a merchant-created offer, is crucial for any e-commerce marketplace, enabling product-based navigation, price comparisons, product reviews, etc. This problem proves a challenging task, mostly due to the extent of product catalog, data heterogeneity, missing product representants, and varying levels of data quality. Moreover, new products are being introduced every day, making it difficult to cast the problem as a classification task. In this work, we apply BERT-based models in a similarity learning setup to solve the product matching problem. We provide a thorough ablation study, showing the impact of architecture and training objective choices. Application of transformer-based architectures and proper sampling techniques significantly boosts performance for a range of e-commerce domains, allowing for production deployment.

pdf bib
KLEJ: Comprehensive Benchmark for Polish Language Understanding
Piotr Rybak | Robert Mroczkowski | Janusz Tracz | Ireneusz Gawlik
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

In recent years, a series of Transformer-based models unlocked major improvements in general natural language understanding (NLU) tasks. Such a fast pace of research would not be possible without general NLU benchmarks, which allow for a fair comparison of the proposed methods. However, such benchmarks are available only for a handful of languages. To alleviate this issue, we introduce a comprehensive multi-task benchmark for the Polish language understanding, accompanied by an online leaderboard. It consists of a diverse set of tasks, adopted from existing datasets for named entity recognition, question-answering, textual entailment, and others. We also introduce a new sentiment analysis task for the e-commerce domain, named Allegro Reviews (AR). To ensure a common evaluation scheme and promote models that generalize to different NLU tasks, the benchmark includes datasets from varying domains and applications. Additionally, we release HerBERT, a Transformer-based model trained specifically for the Polish language, which has the best average performance and obtains the best results for three out of nine tasks. Finally, we provide an extensive evaluation, including several standard baselines and recently proposed, multilingual Transformer-based models.

2018

pdf bib
An Application for Building a Polish Telephone Speech Corpus
Bartosz Ziółko | Piotr Żelasko | Ireneusz Gawlik | Tomasz Pędzimąż | Tomasz Jadczyk
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)