Hyunji Hayley Park


2021

pdf bib
Morphology Matters: A Multilingual Language Modeling Analysis
Hyunji Hayley Park | Katherine J. Zhang | Coleman Haley | Kenneth Steimel | Han Liu | Lane Schwartz
Transactions of the Association for Computational Linguistics, Volume 9

Abstract Prior studies in multilingual language modeling (e.g., Cotterell et al., 2018; Mielke et al., 2019) disagree on whether or not inflectional morphology makes languages harder to model. We attempt to resolve the disagreement and extend those studies. We compile a larger corpus of 145 Bible translations in 92 languages and a larger number of typological features.1 We fill in missing typological data for several languages and consider corpus-based measures of morphological complexity in addition to expert-produced typological features. We find that several morphological measures are significantly associated with higher surprisal when LSTM models are trained with BPE-segmented data. We also investigate linguistically motivated subword segmentation strategies like Morfessor and Finite-State Transducers (FSTs) and find that these segmentation strategies yield better performance and reduce the impact of a language’s morphology on language modeling.

2020

pdf bib
Improved Finite-State Morphological Analysis for St. Lawrence Island Yupik Using Paradigm Function Morphology
Emily Chen | Hyunji Hayley Park | Lane Schwartz
Proceedings of the 12th Language Resources and Evaluation Conference

St. Lawrence Island Yupik is an endangered polysynthetic language of the Bering Strait region. While conducting linguistic fieldwork between 2016 and 2019, we observed substantial support within the Yupik community for language revitalization and for resource development to support Yupik education. To that end, Chen & Schwartz (2018) implemented a finite-state morphological analyzer as a critical enabling technology for use in Yupik language education and technology. Chen & Schwartz (2018) reported a morphological analysis coverage rate of approximately 75% on a dataset of 60K Yupik tokens, leaving considerable room for improvement. In this work, we present a re-implementation of the Chen & Schwartz (2018) finite-state morphological analyzer for St. Lawrence Island Yupik that incorporates new linguistic insights; in particular, in this implementation we make use of the Paradigm Function Morphology (PFM) theory of morphology. We evaluate this new PFM-based morphological analyzer, and demonstrate that it consistently outperforms the existing analyzer of Chen & Schwartz (2018) with respect to accuracy and coverage rate across multiple datasets.