Hongzhi Liu


2019

pdf bib
Representation Learning with Ordered Relation Paths for Knowledge Graph Completion
Yao Zhu | Hongzhi Liu | Zhonghai Wu | Yang Song | Tao Zhang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Incompleteness is a common problem for existing knowledge graphs (KGs), and the completion of KG which aims to predict links between entities is challenging. Most existing KG completion methods only consider the direct relation between nodes and ignore the relation paths which contain useful information for link prediction. Recently, a few methods take relation paths into consideration but pay less attention to the order of relations in paths which is important for reasoning. In addition, these path-based models always ignore nonlinear contributions of path features for link prediction. To solve these problems, we propose a novel KG completion method named OPTransE. Instead of embedding both entities of a relation into the same latent space as in previous methods, we project the head entity and the tail entity of each relation into different spaces to guarantee the order of relations in the path. Meanwhile, we adopt a pooling strategy to extract nonlinear and complex features of different paths to further improve the performance of link prediction. Experimental results on two benchmark datasets show that the proposed model OPTransE performs better than state-of-the-art methods.

pdf bib
Data-Anonymous Encoding for Text-to-SQL Generation
Zhen Dong | Shizhao Sun | Hongzhi Liu | Jian-Guang Lou | Dongmei Zhang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

On text-to-SQL generation, the input utterance usually contains lots of tokens that are related to column names or cells in the table, called table-related tokens. These table-related tokens are troublesome for the downstream neural semantic parser because it brings complex semantics and hinders the sharing across the training examples. However, existing approaches either ignore handling these tokens before the semantic parser or simply use deterministic approaches based on string-match or word embedding similarity. In this work, we propose a more efficient approach to handle table-related tokens before the semantic parser. First, we formulate it as a sequential tagging problem and propose a two-stage anonymization model to learn the semantic relationship between tables and input utterances. Then, we leverage the implicit supervision from SQL queries by policy gradient to guide the training. Experiments demonstrate that our approach consistently improves performances of different neural semantic parsers and significantly outperforms deterministic approaches.