Hongyin Luo


2021

pdf bib
Mitigating Biases in Toxic Language Detection through Invariant Rationalization
Yung-Sung Chuang | Mingye Gao | Hongyin Luo | James Glass | Hung-yi Lee | Yun-Nung Chen | Shang-Wen Li
Proceedings of the 5th Workshop on Online Abuse and Harms (WOAH 2021)

Automatic detection of toxic language plays an essential role in protecting social media users, especially minority groups, from verbal abuse. However, biases toward some attributes, including gender, race, and dialect, exist in most training datasets for toxicity detection. The biases make the learned models unfair and can even exacerbate the marginalization of people. Considering that current debiasing methods for general natural language understanding tasks cannot effectively mitigate the biases in the toxicity detectors, we propose to use invariant rationalization (InvRat), a game-theoretic framework consisting of a rationale generator and a predictor, to rule out the spurious correlation of certain syntactic patterns (e.g., identity mentions, dialect) to toxicity labels. We empirically show that our method yields lower false positive rate in both lexical and dialectal attributes than previous debiasing methods.

2020

pdf bib
Knowledge Grounded Conversational Symptom Detection with Graph Memory Networks
Hongyin Luo | Shang-Wen Li | James Glass
Proceedings of the 3rd Clinical Natural Language Processing Workshop

In this work, we propose a novel goal-oriented dialog task, automatic symptom detection. We build a system that can interact with patients through dialog to detect and collect clinical symptoms automatically, which can save a doctor’s time interviewing the patient. Given a set of explicit symptoms provided by the patient to initiate a dialog for diagnosing, the system is trained to collect implicit symptoms by asking questions, in order to collect more information for making an accurate diagnosis. After getting the reply from the patient for each question, the system also decides whether current information is enough for a human doctor to make a diagnosis. To achieve this goal, we propose two neural models and a training pipeline for the multi-step reasoning task. We also build a knowledge graph as additional inputs to further improve model performance. Experiments show that our model significantly outperforms the baseline by 4%, discovering 67% of implicit symptoms on average with a limited number of questions.

2019

pdf bib
Improving Neural Language Models by Segmenting, Attending, and Predicting the Future
Hongyin Luo | Lan Jiang | Yonatan Belinkov | James Glass
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Common language models typically predict the next word given the context. In this work, we propose a method that improves language modeling by learning to align the given context and the following phrase. The model does not require any linguistic annotation of phrase segmentation. Instead, we define syntactic heights and phrase segmentation rules, enabling the model to automatically induce phrases, recognize their task-specific heads, and generate phrase embeddings in an unsupervised learning manner. Our method can easily be applied to language models with different network architectures since an independent module is used for phrase induction and context-phrase alignment, and no change is required in the underlying language modeling network. Experiments have shown that our model outperformed several strong baseline models on different data sets. We achieved a new state-of-the-art performance of 17.4 perplexity on the Wikitext-103 dataset. Additionally, visualizing the outputs of the phrase induction module showed that our model is able to learn approximate phrase-level structural knowledge without any annotation.

2018

pdf bib
Learning Word Representations with Cross-Sentence Dependency for End-to-End Co-reference Resolution
Hongyin Luo | Jim Glass
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

In this work, we present a word embedding model that learns cross-sentence dependency for improving end-to-end co-reference resolution (E2E-CR). While the traditional E2E-CR model generates word representations by running long short-term memory (LSTM) recurrent neural networks on each sentence of an input article or conversation separately, we propose linear sentence linking and attentional sentence linking models to learn cross-sentence dependency. Both sentence linking strategies enable the LSTMs to make use of valuable information from context sentences while calculating the representation of the current input word. With this approach, the LSTMs learn word embeddings considering knowledge not only from the current sentence but also from the entire input document. Experiments show that learning cross-sentence dependency enriches information contained by the word representations, and improves the performance of the co-reference resolution model compared with our baseline.

2015

pdf bib
Online Learning of Interpretable Word Embeddings
Hongyin Luo | Zhiyuan Liu | Huanbo Luan | Maosong Sun
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing