Guy Rotman


2021

pdf bib
Model Compression for Domain Adaptation through Causal Effect Estimation
Guy Rotman | Amir Feder | Roi Reichart
Transactions of the Association for Computational Linguistics, Volume 9

Abstract Recent improvements in the predictive quality of natural language processing systems are often dependent on a substantial increase in the number of model parameters. This has led to various attempts of compressing such models, but existing methods have not considered the differences in the predictive power of various model components or in the generalizability of the compressed models. To understand the connection between model compression and out-of-distribution generalization, we define the task of compressing language representation models such that they perform best in a domain adaptation setting. We choose to address this problem from a causal perspective, attempting to estimate the average treatment effect (ATE) of a model component, such as a single layer, on the model’s predictions. Our proposed ATE-guided Model Compression scheme (AMoC), generates many model candidates, differing by the model components that were removed. Then, we select the best candidate through a stepwise regression model that utilizes the ATE to predict the expected performance on the target domain. AMoC outperforms strong baselines on dozens of domain pairs across three text classification and sequence tagging tasks.1

pdf bib
Proceedings of the Second Workshop on Domain Adaptation for NLP
Eyal Ben-David | Shay Cohen | Ryan McDonald | Barbara Plank | Roi Reichart | Guy Rotman | Yftah Ziser
Proceedings of the Second Workshop on Domain Adaptation for NLP

2019

pdf bib
Deep Contextualized Self-training for Low Resource Dependency Parsing
Guy Rotman | Roi Reichart
Transactions of the Association for Computational Linguistics, Volume 7

Neural dependency parsing has proven very effective, achieving state-of-the-art results on numerous domains and languages. Unfortunately, it requires large amounts of labeled data, which is costly and laborious to create. In this paper we propose a self-training algorithm that alleviates this annotation bottleneck by training a parser on its own output. Our Deep Contextualized Self-training (DCST) algorithm utilizes representation models trained on sequence labeling tasks that are derived from the parser’s output when applied to unlabeled data, and integrates these models with the base parser through a gating mechanism. We conduct experiments across multiple languages, both in low resource in-domain and in cross-domain setups, and demonstrate that DCST substantially outperforms traditional self-training as well as recent semi-supervised training methods.1

2018

pdf bib
Bridging Languages through Images with Deep Partial Canonical Correlation Analysis
Guy Rotman | Ivan Vulić | Roi Reichart
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We present a deep neural network that leverages images to improve bilingual text embeddings. Relying on bilingual image tags and descriptions, our approach conditions text embedding induction on the shared visual information for both languages, producing highly correlated bilingual embeddings. In particular, we propose a novel model based on Partial Canonical Correlation Analysis (PCCA). While the original PCCA finds linear projections of two views in order to maximize their canonical correlation conditioned on a shared third variable, we introduce a non-linear Deep PCCA (DPCCA) model, and develop a new stochastic iterative algorithm for its optimization. We evaluate PCCA and DPCCA on multilingual word similarity and cross-lingual image description retrieval. Our models outperform a large variety of previous methods, despite not having access to any visual signal during test time inference.