Guillaume Thomas


2021

pdf bib
How is BERT surprised? Layerwise detection of linguistic anomalies
Bai Li | Zining Zhu | Guillaume Thomas | Yang Xu | Frank Rudzicz
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Transformer language models have shown remarkable ability in detecting when a word is anomalous in context, but likelihood scores offer no information about the cause of the anomaly. In this work, we use Gaussian models for density estimation at intermediate layers of three language models (BERT, RoBERTa, and XLNet), and evaluate our method on BLiMP, a grammaticality judgement benchmark. In lower layers, surprisal is highly correlated to low token frequency, but this correlation diminishes in upper layers. Next, we gather datasets of morphosyntactic, semantic, and commonsense anomalies from psycholinguistic studies; we find that the best performing model RoBERTa exhibits surprisal in earlier layers when the anomaly is morphosyntactic than when it is semantic, while commonsense anomalies do not exhibit surprisal at any intermediate layer. These results suggest that language models employ separate mechanisms to detect different types of linguistic anomalies.

2020

pdf bib
Word class flexibility: A deep contextualized approach
Bai Li | Guillaume Thomas | Yang Xu | Frank Rudzicz
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Word class flexibility refers to the phenomenon whereby a single word form is used across different grammatical categories. Extensive work in linguistic typology has sought to characterize word class flexibility across languages, but quantifying this phenomenon accurately and at scale has been fraught with difficulties. We propose a principled methodology to explore regularity in word class flexibility. Our method builds on recent work in contextualized word embeddings to quantify semantic shift between word classes (e.g., noun-to-verb, verb-to-noun), and we apply this method to 37 languages. We find that contextualized embeddings not only capture human judgment of class variation within words in English, but also uncover shared tendencies in class flexibility across languages. Specifically, we find greater semantic variation when flexible lemmas are used in their dominant word class, supporting the view that word class flexibility is a directional process. Our work highlights the utility of deep contextualized models in linguistic typology.

2019

pdf bib
Word order variation in Mbyá Guaraní
Angelika Kiss | Guillaume Thomas
Proceedings of the Fifth International Conference on Dependency Linguistics (Depling, SyntaxFest 2019)

pdf bib
Universal Dependencies for Mbyá Guaraní
Guillaume Thomas
Proceedings of the Third Workshop on Universal Dependencies (UDW, SyntaxFest 2019)