Fenglong Ma


2021

pdf bib
Fusion: Towards Automated ICD Coding via Feature Compression
Junyu Luo | Cao Xiao | Lucas Glass | Jimeng Sun | Fenglong Ma
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Knowledge-Guided Paraphrase Identification
Haoyu Wang | Fenglong Ma | Yaqing Wang | Jing Gao
Findings of the Association for Computational Linguistics: EMNLP 2021

Paraphrase identification (PI), a fundamental task in natural language processing, is to identify whether two sentences express the same or similar meaning, which is a binary classification problem. Recently, BERT-like pre-trained language models have been a popular choice for the frameworks of various PI models, but almost all existing methods consider general domain text. When these approaches are applied to a specific domain, existing models cannot make accurate predictions due to the lack of professional knowledge. In light of this challenge, we propose a novel framework, namely , which can leverage the external unstructured Wikipedia knowledge to accurately identify paraphrases. We propose to mine outline knowledge of concepts related to given sentences from Wikipedia via BM25 model. After retrieving related outline knowledge, makes predictions based on both the semantic information of two sentences and the outline knowledge. Besides, we propose a gating mechanism to aggregate the semantic information-based prediction and the knowledge-based prediction. Extensive experiments are conducted on two public datasets: PARADE (a computer science domain dataset) and clinicalSTS2019 (a biomedical domain dataset). The results show that the proposed outperforms state-of-the-art methods.

pdf bib
Writing by Memorizing: Hierarchical Retrieval-based Medical Report Generation
Xingyi Yang | Muchao Ye | Quanzeng You | Fenglong Ma
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Medical report generation is one of the most challenging tasks in medical image analysis. Although existing approaches have achieved promising results, they either require a predefined template database in order to retrieve sentences or ignore the hierarchical nature of medical report generation. To address these issues, we propose MedWriter that incorporates a novel hierarchical retrieval mechanism to automatically extract both report and sentence-level templates for clinically accurate report generation. MedWriter first employs the Visual-Language Retrieval (VLR) module to retrieve the most relevant reports for the given images. To guarantee the logical coherence between generated sentences, the Language-Language Retrieval (LLR) module is introduced to retrieve relevant sentences based on the previous generated description. At last, a language decoder fuses image features and features from retrieved reports and sentences to generate meaningful medical reports. We verified the effectiveness of our model by automatic evaluation and human evaluation on two datasets, i.e., Open-I and MIMIC-CXR.

2019

pdf bib
Multi-grained Named Entity Recognition
Congying Xia | Chenwei Zhang | Tao Yang | Yaliang Li | Nan Du | Xian Wu | Wei Fan | Fenglong Ma | Philip Yu
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

This paper presents a novel framework, MGNER, for Multi-Grained Named Entity Recognition where multiple entities or entity mentions in a sentence could be non-overlapping or totally nested. Different from traditional approaches regarding NER as a sequential labeling task and annotate entities consecutively, MGNER detects and recognizes entities on multiple granularities: it is able to recognize named entities without explicitly assuming non-overlapping or totally nested structures. MGNER consists of a Detector that examines all possible word segments and a Classifier that categorizes entities. In addition, contextual information and a self-attention mechanism are utilized throughout the framework to improve the NER performance. Experimental results show that MGNER outperforms current state-of-the-art baselines up to 4.4% in terms of the F1 score among nested/non-overlapping NER tasks.