Fei Huang


2021

pdf bib
NAST: A Non-Autoregressive Generator with Word Alignment for Unsupervised Text Style Transfer
Fei Huang | Zikai Chen | Chen Henry Wu | Qihan Guo | Xiaoyan Zhu | Minlie Huang
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
A Unified Span-Based Approach for Opinion Mining with Syntactic Constituents
Qingrong Xia | Bo Zhang | Rui Wang | Zhenghua Li | Yue Zhang | Fei Huang | Luo Si | Min Zhang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Fine-grained opinion mining (OM) has achieved increasing attraction in the natural language processing (NLP) community, which aims to find the opinion structures of “Who expressed what opinions towards what” in one sentence. In this work, motivated by its span-based representations of opinion expressions and roles, we propose a unified span-based approach for the end-to-end OM setting. Furthermore, inspired by the unified span-based formalism of OM and constituent parsing, we explore two different methods (multi-task learning and graph convolutional neural network) to integrate syntactic constituents into the proposed model to help OM. We conduct experiments on the commonly used MPQA 2.0 dataset. The experimental results show that our proposed unified span-based approach achieves significant improvements over previous works in the exact F1 score and reduces the number of wrongly-predicted opinion expressions and roles, showing the effectiveness of our method. In addition, incorporating the syntactic constituents achieves promising improvements over the strong baseline enhanced by contextualized word representations.

pdf bib
Improving Biomedical Pretrained Language Models with Knowledge
Zheng Yuan | Yijia Liu | Chuanqi Tan | Songfang Huang | Fei Huang
Proceedings of the 20th Workshop on Biomedical Language Processing

Pretrained language models have shown success in many natural language processing tasks. Many works explore to incorporate the knowledge into the language models. In the biomedical domain, experts have taken decades of effort on building large-scale knowledge bases. For example, UMLS contains millions of entities with their synonyms and defines hundreds of relations among entities. Leveraging this knowledge can benefit a variety of downstream tasks such as named entity recognition and relation extraction. To this end, we propose KeBioLM, a biomedical pretrained language model that explicitly leverages knowledge from the UMLS knowledge bases. Specifically, we extract entities from PubMed abstracts and link them to UMLS. We then train a knowledge-aware language model that firstly applies a text-only encoding layer to learn entity representation and then applies a text-entity fusion encoding to aggregate entity representation. In addition, we add two training objectives as entity detection and entity linking. Experiments on the named entity recognition and relation extraction tasks from the BLURB benchmark demonstrate the effectiveness of our approach. Further analysis on a collected probing dataset shows that our model has better ability to model medical knowledge.

pdf bib
E2E-VLP: End-to-End Vision-Language Pre-training Enhanced by Visual Learning
Haiyang Xu | Ming Yan | Chenliang Li | Bin Bi | Songfang Huang | Wenming Xiao | Fei Huang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Vision-language pre-training (VLP) on large-scale image-text pairs has achieved huge success for the cross-modal downstream tasks. The most existing pre-training methods mainly adopt a two-step training procedure, which firstly employs a pre-trained object detector to extract region-based visual features, then concatenates the image representation and text embedding as the input of Transformer to train. However, these methods face problems of using task-specific visual representation of the specific object detector for generic cross-modal understanding, and the computation inefficiency of two-stage pipeline. In this paper, we propose the first end-to-end vision-language pre-trained model for both V+L understanding and generation, namely E2E-VLP, where we build a unified Transformer framework to jointly learn visual representation, and semantic alignments between image and text. We incorporate the tasks of object detection and image captioning into pre-training with a unified Transformer encoder-decoder architecture for enhancing visual learning. An extensive set of experiments have been conducted on well-established vision-language downstream tasks to demonstrate the effectiveness of this novel VLP paradigm.

pdf bib
Structural Knowledge Distillation: Tractably Distilling Information for Structured Predictor
Xinyu Wang | Yong Jiang | Zhaohui Yan | Zixia Jia | Nguyen Bach | Tao Wang | Zhongqiang Huang | Fei Huang | Kewei Tu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Knowledge distillation is a critical technique to transfer knowledge between models, typically from a large model (the teacher) to a more fine-grained one (the student). The objective function of knowledge distillation is typically the cross-entropy between the teacher and the student’s output distributions. However, for structured prediction problems, the output space is exponential in size; therefore, the cross-entropy objective becomes intractable to compute and optimize directly. In this paper, we derive a factorized form of the knowledge distillation objective for structured prediction, which is tractable for many typical choices of the teacher and student models. In particular, we show the tractability and empirical effectiveness of structural knowledge distillation between sequence labeling and dependency parsing models under four different scenarios: 1) the teacher and student share the same factorization form of the output structure scoring function; 2) the student factorization produces more fine-grained substructures than the teacher factorization; 3) the teacher factorization produces more fine-grained substructures than the student factorization; 4) the factorization forms from the teacher and the student are incompatible.

pdf bib
Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning
Xinyu Wang | Yong Jiang | Nguyen Bach | Tao Wang | Zhongqiang Huang | Fei Huang | Kewei Tu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Recent advances in Named Entity Recognition (NER) show that document-level contexts can significantly improve model performance. In many application scenarios, however, such contexts are not available. In this paper, we propose to find external contexts of a sentence by retrieving and selecting a set of semantically relevant texts through a search engine, with the original sentence as the query. We find empirically that the contextual representations computed on the retrieval-based input view, constructed through the concatenation of a sentence and its external contexts, can achieve significantly improved performance compared to the original input view based only on the sentence. Furthermore, we can improve the model performance of both input views by Cooperative Learning, a training method that encourages the two input views to produce similar contextual representations or output label distributions. Experiments show that our approach can achieve new state-of-the-art performance on 8 NER data sets across 5 domains.

pdf bib
Automated Concatenation of Embeddings for Structured Prediction
Xinyu Wang | Yong Jiang | Nguyen Bach | Tao Wang | Zhongqiang Huang | Fei Huang | Kewei Tu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Pretrained contextualized embeddings are powerful word representations for structured prediction tasks. Recent work found that better word representations can be obtained by concatenating different types of embeddings. However, the selection of embeddings to form the best concatenated representation usually varies depending on the task and the collection of candidate embeddings, and the ever-increasing number of embedding types makes it a more difficult problem. In this paper, we propose Automated Concatenation of Embeddings (ACE) to automate the process of finding better concatenations of embeddings for structured prediction tasks, based on a formulation inspired by recent progress on neural architecture search. Specifically, a controller alternately samples a concatenation of embeddings, according to its current belief of the effectiveness of individual embedding types in consideration for a task, and updates the belief based on a reward. We follow strategies in reinforcement learning to optimize the parameters of the controller and compute the reward based on the accuracy of a task model, which is fed with the sampled concatenation as input and trained on a task dataset. Empirical results on 6 tasks and 21 datasets show that our approach outperforms strong baselines and achieves state-of-the-art performance with fine-tuned embeddings in all the evaluations.

pdf bib
Multi-View Cross-Lingual Structured Prediction with Minimum Supervision
Zechuan Hu | Yong Jiang | Nguyen Bach | Tao Wang | Zhongqiang Huang | Fei Huang | Kewei Tu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

In structured prediction problems, cross-lingual transfer learning is an efficient way to train quality models for low-resource languages, and further improvement can be obtained by learning from multiple source languages. However, not all source models are created equal and some may hurt performance on the target language. Previous work has explored the similarity between source and target sentences as an approximate measure of strength for different source models. In this paper, we propose a multi-view framework, by leveraging a small number of labeled target sentences, to effectively combine multiple source models into an aggregated source view at different granularity levels (language, sentence, or sub-structure), and transfer it to a target view based on a task-specific model. By encouraging the two views to interact with each other, our framework can dynamically adjust the confidence level of each source model and improve the performance of both views during training. Experiments for three structured prediction tasks on sixteen data sets show that our framework achieves significant improvement over all existing approaches, including these with access to additional source language data.

pdf bib
OntoED: Low-resource Event Detection with Ontology Embedding
Shumin Deng | Ningyu Zhang | Luoqiu Li | Chen Hui | Tou Huaixiao | Mosha Chen | Fei Huang | Huajun Chen
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Event Detection (ED) aims to identify event trigger words from a given text and classify it into an event type. Most current methods to ED rely heavily on training instances, and almost ignore the correlation of event types. Hence, they tend to suffer from data scarcity and fail to handle new unseen event types. To address these problems, we formulate ED as a process of event ontology population: linking event instances to pre-defined event types in event ontology, and propose a novel ED framework entitled OntoED with ontology embedding. We enrich event ontology with linkages among event types, and further induce more event-event correlations. Based on the event ontology, OntoED can leverage and propagate correlation knowledge, particularly from data-rich to data-poor event types. Furthermore, OntoED can be applied to new unseen event types, by establishing linkages to existing ones. Experiments indicate that OntoED is more predominant and robust than previous approaches to ED, especially in data-scarce scenarios.

pdf bib
A Semantic-based Method for Unsupervised Commonsense Question Answering
Yilin Niu | Fei Huang | Jiaming Liang | Wenkai Chen | Xiaoyan Zhu | Minlie Huang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Unsupervised commonsense question answering is appealing since it does not rely on any labeled task data. Among existing work, a popular solution is to use pre-trained language models to score candidate choices directly conditioned on the question or context. However, such scores from language models can be easily affected by irrelevant factors, such as word frequencies, sentence structures, etc. These distracting factors may not only mislead the model to choose a wrong answer but also make it oversensitive to lexical perturbations in candidate answers. In this paper, we present a novel SEmantic-based Question Answering method (SEQA) for unsupervised commonsense question answering. Instead of directly scoring each answer choice, our method first generates a set of plausible answers with generative models (e.g., GPT-2), and then uses these plausible answers to select the correct choice by considering the semantic similarity between each plausible answer and each choice. We devise a simple, yet sound formalism for this idea and verify its effectiveness and robustness with extensive experiments. We evaluate the proposed method on four benchmark datasets, and our method achieves the best results in unsupervised settings. Moreover, when attacked by TextFooler with synonym replacement, SEQA demonstrates much less performance drops than baselines, thereby indicating stronger robustness.

pdf bib
VECO: Variable and Flexible Cross-lingual Pre-training for Language Understanding and Generation
Fuli Luo | Wei Wang | Jiahao Liu | Yijia Liu | Bin Bi | Songfang Huang | Fei Huang | Luo Si
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Existing work in multilingual pretraining has demonstrated the potential of cross-lingual transferability by training a unified Transformer encoder for multiple languages. However, much of this work only relies on the shared vocabulary and bilingual contexts to encourage the correlation across languages, which is loose and implicit for aligning the contextual representations between languages. In this paper, we plug a cross-attention module into the Transformer encoder to explicitly build the interdependence between languages. It can effectively avoid the degeneration of predicting masked words only conditioned on the context in its own language. More importantly, when fine-tuning on downstream tasks, the cross-attention module can be plugged in or out on-demand, thus naturally benefiting a wider range of cross-lingual tasks, from language understanding to generation. As a result, the proposed cross-lingual model delivers new state-of-the-art results on various cross-lingual understanding tasks of the XTREME benchmark, covering text classification, sequence labeling, question answering, and sentence retrieval. For cross-lingual generation tasks, it also outperforms all existing cross-lingual models and state-of-the-art Transformer variants on WMT14 English-to-German and English-to-French translation datasets, with gains of up to 1 2 BLEU.

pdf bib
Risk Minimization for Zero-shot Sequence Labeling
Zechuan Hu | Yong Jiang | Nguyen Bach | Tao Wang | Zhongqiang Huang | Fei Huang | Kewei Tu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Zero-shot sequence labeling aims to build a sequence labeler without human-annotated datasets. One straightforward approach is utilizing existing systems (source models) to generate pseudo-labeled datasets and train a target sequence labeler accordingly. However, due to the gap between the source and the target languages/domains, this approach may fail to recover the true labels. In this paper, we propose a novel unified framework for zero-shot sequence labeling with minimum risk training and design a new decomposable risk function that models the relations between the predicted labels from the source models and the true labels. By making the risk function trainable, we draw a connection between minimum risk training and latent variable model learning. We propose a unified learning algorithm based on the expectation maximization (EM) algorithm. We extensively evaluate our proposed approaches on cross-lingual/domain sequence labeling tasks over twenty-one datasets. The results show that our approaches outperform state-of-the-art baseline systems.

pdf bib
StructuralLM: Structural Pre-training for Form Understanding
Chenliang Li | Bin Bi | Ming Yan | Wei Wang | Songfang Huang | Fei Huang | Luo Si
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Large pre-trained language models achieve state-of-the-art results when fine-tuned on downstream NLP tasks. However, they almost exclusively focus on text-only representation, while neglecting cell-level layout information that is important for form image understanding. In this paper, we propose a new pre-training approach, StructuralLM, to jointly leverage cell and layout information from scanned documents. Specifically, we pre-train StructuralLM with two new designs to make the most of the interactions of cell and layout information: 1) each cell as a semantic unit; 2) classification of cell positions. The pre-trained StructuralLM achieves new state-of-the-art results in different types of downstream tasks, including form understanding (from 78.95 to 85.14), document visual question answering (from 72.59 to 83.94) and document image classification (from 94.43 to 96.08).

pdf bib
Preview, Attend and Review: Schema-Aware Curriculum Learning for Multi-Domain Dialogue State Tracking
Yinpei Dai | Hangyu Li | Yongbin Li | Jian Sun | Fei Huang | Luo Si | Xiaodan Zhu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Existing dialog state tracking (DST) models are trained with dialog data in a random order, neglecting rich structural information in a dataset. In this paper, we propose to use curriculum learning (CL) to better leverage both the curriculum structure and schema structure for task-oriented dialogs. Specifically, we propose a model-agnostic framework called Schema-aware Curriculum Learning for Dialog State Tracking (SaCLog), which consists of a preview module that pre-trains a DST model with schema information, a curriculum module that optimizes the model with CL, and a review module that augments mispredicted data to reinforce the CL training. We show that our proposed approach improves DST performance over both a transformer-based and RNN-based DST model (TripPy and TRADE) and achieves new state-of-the-art results on WOZ2.0 and MultiWOZ2.1.

pdf bib
DialogueCSE: Dialogue-based Contrastive Learning of Sentence Embeddings
Che Liu | Rui Wang | Jinghua Liu | Jian Sun | Fei Huang | Luo Si
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Learning sentence embeddings from dialogues has drawn increasing attention due to its low annotation cost and high domain adaptability. Conventional approaches employ the siamese-network for this task, which obtains the sentence embeddings through modeling the context-response semantic relevance by applying a feed-forward network on top of the sentence encoders. However, as the semantic textual similarity is commonly measured through the element-wise distance metrics (e.g. cosine and L2 distance), such architecture yields a large gap between training and evaluating. In this paper, we propose DialogueCSE, a dialogue-based contrastive learning approach to tackle this issue. DialogueCSE first introduces a novel matching-guided embedding (MGE) mechanism, which generates a context-aware embedding for each candidate response embedding (i.e. the context-free embedding) according to the guidance of the multi-turn context-response matching matrices. Then it pairs each context-aware embedding with its corresponding context-free embedding and finally minimizes the contrastive loss across all pairs. We evaluate our model on three multi-turn dialogue datasets: the Microsoft Dialogue Corpus, the Jing Dong Dialogue Corpus, and the E-commerce Dialogue Corpus. Evaluation results show that our approach significantly outperforms the baselines across all three datasets in terms of MAP and Spearman’s correlation measures, demonstrating its effectiveness. Further quantitative experiments show that our approach achieves better performance when leveraging more dialogue context and remains robust when less training data is provided.

pdf bib
MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity Representations
Xinyin Ma | Yong Jiang | Nguyen Bach | Tao Wang | Zhongqiang Huang | Fei Huang | Weiming Lu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Entity retrieval, which aims at disambiguating mentions to canonical entities from massive KBs, is essential for many tasks in natural language processing. Recent progress in entity retrieval shows that the dual-encoder structure is a powerful and efficient framework to nominate candidates if entities are only identified by descriptions. However, they ignore the property that meanings of entity mentions diverge in different contexts and are related to various portions of descriptions, which are treated equally in previous works. In this work, we propose Multi-View Entity Representations (MuVER), a novel approach for entity retrieval that constructs multi-view representations for entity descriptions and approximates the optimal view for mentions via a heuristic searching method. Our method achieves the state-of-the-art performance on ZESHEL and improves the quality of candidates on three standard Entity Linking datasets.

pdf bib
Rethinking Denoised Auto-Encoding in Language Pre-Training
Fuli Luo | Pengcheng Yang | Shicheng Li | Xuancheng Ren | Xu Sun | Songfang Huang | Fei Huang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Pre-trained self-supervised models such as BERT have achieved striking success in learning sequence representations, especially for natural language processing. These models typically corrupt the given sequences with certain types of noise, such as masking, shuffling, or substitution, and then try to recover the original input. However, such pre-training approaches are prone to learning representations that are covariant with the noise, leading to the discrepancy between the pre-training and fine-tuning stage. To remedy this, we present ContrAstive Pre-Training (CAPT) to learn noise invariant sequence representations. The proposed CAPT encourages the consistency between representations of the original sequence and its corrupted version via unsupervised instance-wise training signals. In this way, it not only alleviates the pretrain-finetune discrepancy induced by the noise of pre-training, but also aids the pre-trained model in better capturing global semantics of the input via more effective sentence-level supervision. Different from most prior work that focuses on a particular modality, comprehensive empirical evidence on 11 natural language understanding and cross-modal tasks illustrates that CAPT is applicable for both language and vision-language tasks, and obtains surprisingly consistent improvement, including 0.6% absolute gain on GLUE benchmarks and 0.8% absolute increment on NLVR2.

pdf bib
Word Reordering for Zero-shot Cross-lingual Structured Prediction
Tao Ji | Yong Jiang | Tao Wang | Zhongqiang Huang | Fei Huang | Yuanbin Wu | Xiaoling Wang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Adapting word order from one language to another is a key problem in cross-lingual structured prediction. Current sentence encoders (e.g., RNN, Transformer with position embeddings) are usually word order sensitive. Even with uniform word form representations (MUSE, mBERT), word order discrepancies may hurt the adaptation of models. In this paper, we build structured prediction models with bag-of-words inputs, and introduce a new reordering module to organizing words following the source language order, which learns task-specific reordering strategies from a general-purpose order predictor model. Experiments on zero-shot cross-lingual dependency parsing, POS tagging, and morphological tagging show that our model can significantly improve target language performances, especially for languages that are distant from the source language.

pdf bib
A Unified Encoding of Structures in Transition Systems
Tao Ji | Yong Jiang | Tao Wang | Zhongqiang Huang | Fei Huang | Yuanbin Wu | Xiaoling Wang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Transition systems usually contain various dynamic structures (e.g., stacks, buffers). An ideal transition-based model should encode these structures completely and efficiently. Previous works relying on templates or neural network structures either only encode partial structure information or suffer from computation efficiency. In this paper, we propose a novel attention-based encoder unifying representation of all structures in a transition system. Specifically, we separate two views of items on structures, namely structure-invariant view and structure-dependent view. With the help of parallel-friendly attention network, we are able to encoding transition states with O(1) additional complexity (with respect to basic feature extractors). Experiments on the PTB and UD show that our proposed method significantly improves the test speed and achieves the best transition-based model, and is comparable to state-of-the-art methods.

pdf bib
Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning
Runxin Xu | Fuli Luo | Zhiyuan Zhang | Chuanqi Tan | Baobao Chang | Songfang Huang | Fei Huang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Recent pretrained language models extend from millions to billions of parameters. Thus the need to fine-tune an extremely large pretrained model with a limited training corpus arises in various downstream tasks. In this paper, we propose a straightforward yet effective fine-tuning technique, Child-Tuning, which updates a subset of parameters (called child network) of large pretrained models via strategically masking out the gradients of the non-child network during the backward process. Experiments on various downstream tasks in GLUE benchmark show that Child-Tuning consistently outperforms the vanilla fine-tuning by 1.5 8.6 average score among four different pretrained models, and surpasses the prior fine-tuning techniques by 0.6 1.3 points. Furthermore, empirical results on domain transfer and task transfer show that Child-Tuning can obtain better generalization performance by large margins.

2020

pdf bib
Aspect Sentiment Classification with Aspect-Specific Opinion Spans
Lu Xu | Lidong Bing | Wei Lu | Fei Huang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Aspect based sentiment analysis, predicting sentiment polarity of given aspects, has drawn extensive attention. Previous attention-based models emphasize using aspect semantics to help extract opinion features for classification. However, these works are either not able to capture opinion spans as a whole, or not able to capture variable-length opinion spans. In this paper, we present a neat and effective structured attention model by aggregating multiple linear-chain CRFs. Such a design allows the model to extract aspect-specific opinion spans and then evaluate sentiment polarity by exploiting the extracted opinion features. The experimental results on four datasets demonstrate the effectiveness of the proposed model, and our analysis demonstrates that our model can capture aspect-specific opinion spans.

pdf bib
AIN: Fast and Accurate Sequence Labeling with Approximate Inference Network
Xinyu Wang | Yong Jiang | Nguyen Bach | Tao Wang | Zhongqiang Huang | Fei Huang | Kewei Tu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

The linear-chain Conditional Random Field (CRF) model is one of the most widely-used neural sequence labeling approaches. Exact probabilistic inference algorithms such as the forward-backward and Viterbi algorithms are typically applied in training and prediction stages of the CRF model. However, these algorithms require sequential computation that makes parallelization impossible. In this paper, we propose to employ a parallelizable approximate variational inference algorithm for the CRF model. Based on this algorithm, we design an approximate inference network that can be connected with the encoder of the neural CRF model to form an end-to-end network, which is amenable to parallelization for faster training and prediction. The empirical results show that our proposed approaches achieve a 12.7-fold improvement in decoding speed with long sentences and a competitive accuracy compared with the traditional CRF approach.

pdf bib
PALM: Pre-training an Autoencoding&Autoregressive Language Model for Context-conditioned Generation
Bin Bi | Chenliang Li | Chen Wu | Ming Yan | Wei Wang | Songfang Huang | Fei Huang | Luo Si
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Self-supervised pre-training, such as BERT, MASS and BART, has emerged as a powerful technique for natural language understanding and generation. Existing pre-training techniques employ autoencoding and/or autoregressive objectives to train Transformer-based models by recovering original word tokens from corrupted text with some masked tokens. The training goals of existing techniques are often inconsistent with the goals of many language generation tasks, such as generative question answering and conversational response generation, for producing new text given context. This work presents PALM with a novel scheme that jointly pre-trains an autoencoding and autoregressive language model on a large unlabeled corpus, specifically designed for generating new text conditioned on context. The new scheme alleviates the mismatch introduced by the existing denoising scheme between pre-training and fine-tuning where generation is more than reconstructing original text. An extensive set of experiments show that PALM achieves new state-of-the-art results on a variety of language generation benchmarks covering generative question answering (Rank 1 on the official MARCO leaderboard), abstractive summarization on CNN/DailyMail as well as Gigaword, question generation on SQuAD, and conversational response generation on Cornell Movie Dialogues.

pdf bib
OpenUE: An Open Toolkit of Universal Extraction from Text
Ningyu Zhang | Shumin Deng | Zhen Bi | Haiyang Yu | Jiacheng Yang | Mosha Chen | Fei Huang | Wei Zhang | Huajun Chen
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Natural language processing covers a wide variety of tasks with token-level or sentence-level understandings. In this paper, we provide a simple insight that most tasks can be represented in a single universal extraction format. We introduce a prototype model and provide an open-source and extensible toolkit called OpenUE for various extraction tasks. OpenUE allows developers to train custom models to extract information from the text and supports quick model validation for researchers. Besides, OpenUE provides various functional modules to maintain sufficient modularity and extensibility. Except for the toolkit, we also deploy an online demo with restful APIs to support real-time extraction without training and deploying. Additionally, the online system can extract information in various tasks, including relational triple extraction, slot & intent detection, event extraction, and so on. We release the source code, datasets, and pre-trained models to promote future researches in http://github.com/zjunlp/openue.

pdf bib
An Investigation of Potential Function Designs for Neural CRF
Zechuan Hu | Yong Jiang | Nguyen Bach | Tao Wang | Zhongqiang Huang | Fei Huang | Kewei Tu
Findings of the Association for Computational Linguistics: EMNLP 2020

The neural linear-chain CRF model is one of the most widely-used approach to sequence labeling. In this paper, we investigate a series of increasingly expressive potential functions for neural CRF models, which not only integrate the emission and transition functions, but also explicitly take the representations of the contextual words as input. Our extensive experiments show that the decomposed quadrilinear potential function based on the vector representations of two neighboring labels and two neighboring words consistently achieves the best performance.

pdf bib
More Embeddings, Better Sequence Labelers?
Xinyu Wang | Yong Jiang | Nguyen Bach | Tao Wang | Zhongqiang Huang | Fei Huang | Kewei Tu
Findings of the Association for Computational Linguistics: EMNLP 2020

Recent work proposes a family of contextual embeddings that significantly improves the accuracy of sequence labelers over non-contextual embeddings. However, there is no definite conclusion on whether we can build better sequence labelers by combining different kinds of embeddings in various settings. In this paper, we conduct extensive experiments on 3 tasks over 18 datasets and 8 languages to study the accuracy of sequence labeling with various embedding concatenations and make three observations: (1) concatenating more embedding variants leads to better accuracy in rich-resource and cross-domain settings and some conditions of low-resource settings; (2) concatenating contextual sub-word embeddings with contextual character embeddings hurts the accuracy in extremely low-resource settings; (3) based on the conclusion of (1), concatenating additional similar contextual embeddings cannot lead to further improvements. We hope these conclusions can help people build stronger sequence labelers in various settings.

pdf bib
A Knowledge-Enhanced Pretraining Model for Commonsense Story Generation
Jian Guan | Fei Huang | Zhihao Zhao | Xiaoyan Zhu | Minlie Huang
Transactions of the Association for Computational Linguistics, Volume 8

Story generation, namely, generating a reasonable story from a leading context, is an important but challenging task. In spite of the success in modeling fluency and local coherence, existing neural language generation models (e.g., GPT-2) still suffer from repetition, logic conflicts, and lack of long-range coherence in generated stories. We conjecture that this is because of the difficulty of associating relevant commonsense knowledge, understanding the causal relationships, and planning entities and events with proper temporal order. In this paper, we devise a knowledge-enhanced pretraining model for commonsense story generation. We propose to utilize commonsense knowledge from external knowledge bases to generate reasonable stories. To further capture the causal and temporal dependencies between the sentences in a reasonable story, we use multi-task learning, which combines a discriminative objective to distinguish true and fake stories during fine-tuning. Automatic and manual evaluation shows that our model can generate more reasonable stories than state-of-the-art baselines, particularly in terms of logic and global coherence.

pdf bib
FINDINGS OF THE IWSLT 2020 EVALUATION CAMPAIGN
Ebrahim Ansari | Amittai Axelrod | Nguyen Bach | Ondřej Bojar | Roldano Cattoni | Fahim Dalvi | Nadir Durrani | Marcello Federico | Christian Federmann | Jiatao Gu | Fei Huang | Kevin Knight | Xutai Ma | Ajay Nagesh | Matteo Negri | Jan Niehues | Juan Pino | Elizabeth Salesky | Xing Shi | Sebastian Stüker | Marco Turchi | Alexander Waibel | Changhan Wang
Proceedings of the 17th International Conference on Spoken Language Translation

The evaluation campaign of the International Conference on Spoken Language Translation (IWSLT 2020) featured this year six challenge tracks: (i) Simultaneous speech translation, (ii) Video speech translation, (iii) Offline speech translation, (iv) Conversational speech translation, (v) Open domain translation, and (vi) Non-native speech translation. A total of teams participated in at least one of the tracks. This paper introduces each track’s goal, data and evaluation metrics, and reports the results of the received submissions.

pdf bib
Structure-Level Knowledge Distillation For Multilingual Sequence Labeling
Xinyu Wang | Yong Jiang | Nguyen Bach | Tao Wang | Fei Huang | Kewei Tu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Multilingual sequence labeling is a task of predicting label sequences using a single unified model for multiple languages. Compared with relying on multiple monolingual models, using a multilingual model has the benefit of a smaller model size, easier in online serving, and generalizability to low-resource languages. However, current multilingual models still underperform individual monolingual models significantly due to model capacity limitations. In this paper, we propose to reduce the gap between monolingual models and the unified multilingual model by distilling the structural knowledge of several monolingual models (teachers) to the unified multilingual model (student). We propose two novel KD methods based on structure-level information: (1) approximately minimizes the distance between the student’s and the teachers’ structure-level probability distributions, (2) aggregates the structure-level knowledge to local distributions and minimizes the distance between two local probability distributions. Our experiments on 4 multilingual tasks with 25 datasets show that our approaches outperform several strong baselines and have stronger zero-shot generalizability than both the baseline model and teacher models.

pdf bib
A Joint Neural Model for Information Extraction with Global Features
Ying Lin | Heng Ji | Fei Huang | Lingfei Wu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Most existing joint neural models for Information Extraction (IE) use local task-specific classifiers to predict labels for individual instances (e.g., trigger, relation) regardless of their interactions. For example, a victim of a die event is likely to be a victim of an attack event in the same sentence. In order to capture such cross-subtask and cross-instance inter-dependencies, we propose a joint neural framework, OneIE, that aims to extract the globally optimal IE result as a graph from an input sentence. OneIE performs end-to-end IE in four stages: (1) Encoding a given sentence as contextualized word representations; (2) Identifying entity mentions and event triggers as nodes; (3) Computing label scores for all nodes and their pairwise links using local classifiers; (4) Searching for the globally optimal graph with a beam decoder. At the decoding stage, we incorporate global features to capture the cross-subtask and cross-instance interactions. Experiments show that adding global features improves the performance of our model and achieves new state of-the-art on all subtasks. In addition, as OneIE does not use any language-specific feature, we prove it can be easily applied to new languages or trained in a multilingual manner.

2019

pdf bib
ARAML: A Stable Adversarial Training Framework for Text Generation
Pei Ke | Fei Huang | Minlie Huang | Xiaoyan Zhu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Most of the existing generative adversarial networks (GAN) for text generation suffer from the instability of reinforcement learning training algorithms such as policy gradient, leading to unstable performance. To tackle this problem, we propose a novel framework called Adversarial Reward Augmented Maximum Likelihood (ARAML). During adversarial training, the discriminator assigns rewards to samples which are acquired from a stationary distribution near the data rather than the generator’s distribution. The generator is optimized with maximum likelihood estimation augmented by the discriminator’s rewards instead of policy gradient. Experiments show that our model can outperform state-of-the-art text GANs with a more stable training process.

2018

pdf bib
Alibaba Speech Translation Systems for IWSLT 2018
Nguyen Bach | Hongjie Chen | Kai Fan | Cheung-Chi Leung | Bo Li | Chongjia Ni | Rong Tong | Pei Zhang | Boxing Chen | Bin Ma | Fei Huang
Proceedings of the 15th International Conference on Spoken Language Translation

This work describes the En→De Alibaba speech translation system developed for the evaluation campaign of the International Workshop on Spoken Language Translation (IWSLT) 2018. In order to improve ASR performance, multiple ASR models including conventional and end-to-end models are built, then we apply model fusion in the final step. ASR pre and post-processing techniques such as speech segmentation, punctuation insertion, and sentence splitting are found to be very useful for MT. We also employed most techniques that have proven effective during the WMT 2018 evaluation, such as BPE, back translation, data selection, model ensembling and reranking. These ASR and MT techniques, combined, improve the speech translation quality significantly.

2016

pdf bib
Using Relevant Public Posts to Enhance News Article Summarization
Chen Li | Zhongyu Wei | Yang Liu | Yang Jin | Fei Huang
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

A news article summary usually consists of 2-3 key sentences that reflect the gist of that news article. In this paper we explore using public posts following a new article to improve automatic summary generation for the news article. We propose different approaches to incorporate information from public posts, including using frequency information from the posts to re-estimate bigram weights in the ILP-based summarization model and to re-weight a dependency tree edge’s importance for sentence compression, directly selecting sentences from posts as the final summary, and finally a strategy to combine the summarization results generated from news articles and posts. Our experiments on data collected from Facebook show that relevant public posts provide useful information and can be effectively leveraged to improve news article summarization results.

pdf bib
Bilingual Methods for Adaptive Training Data Selection for Machine Translation
Boxing Chen | Roland Kuhn | George Foster | Colin Cherry | Fei Huang
Conferences of the Association for Machine Translation in the Americas: MT Researchers' Track

In this paper, we propose a new data selection method which uses semi-supervised convolutional neural networks based on bitokens (Bi-SSCNNs) for training machine translation systems from a large bilingual corpus. In earlier work, we devised a data selection method based on semi-supervised convolutional neural networks (SSCNNs). The new method, Bi-SSCNN, is based on bitokens, which use bilingual information. When the new methods are tested on two translation tasks (Chinese-to-English and Arabic-to-English), they significantly outperform the other three data selection methods in the experiments. We also show that the BiSSCNN method is much more effective than other methods in preventing noisy sentence pairs from being chosen for training. More interestingly, this method only needs a tiny amount of in-domain data to train the selection model, which makes fine-grained topic-dependent translation adaptation possible. In the follow-up experiments, we find that neural machine translation (NMT) is more sensitive to noisy data than statistical machine translation (SMT). Therefore, Bi-SSCNN which can effectively screen out noisy sentence pairs, can benefit NMT much more than SMT.We observed a BLEU improvement over 3 points on an English-to-French WMT task when Bi-SSCNNs were used.

pdf bib
Semi-supervised Convolutional Networks for Translation Adaptation with Tiny Amount of In-domain Data
Boxing Chen | Fei Huang
Proceedings of The 20th SIGNLL Conference on Computational Natural Language Learning

2015

pdf bib
Improved Arabic Dialect Classification with Social Media Data
Fei Huang
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

2014

pdf bib
Learning Representations for Weakly Supervised Natural Language Processing Tasks
Fei Huang | Arun Ahuja | Doug Downey | Yi Yang | Yuhong Guo | Alexander Yates
Computational Linguistics, Volume 40, Issue 1 - March 2014

pdf bib
Adaptive HTER Estimation for Document-Specific MT Post-Editing
Fei Huang | Jian-Ming Xu | Abraham Ittycheriah | Salim Roukos
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
Improving Word Alignment Using Linguistic Code Switching Data
Fei Huang | Alexander Yates
Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics

2013

pdf bib
Generalized Reordering Rules for Improved SMT
Fei Huang | Cezar Pendus
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

2012

pdf bib
Biased Representation Learning for Domain Adaptation
Fei Huang | Alexander Yates
Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning

pdf bib
Scoring Spoken Responses Based on Content Accuracy
Fei Huang | Lei Chen | Jana Sukkarieh
Proceedings of the Seventh Workshop on Building Educational Applications Using NLP

2011

pdf bib
Goodness: A Method for Measuring Machine Translation Confidence
Nguyen Bach | Fei Huang | Yaser Al-Onaizan
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies

pdf bib
Language Models as Representations for Weakly Supervised NLP Tasks
Fei Huang | Alexander Yates | Arun Ahuja | Doug Downey
Proceedings of the Fifteenth Conference on Computational Natural Language Learning

2010

pdf bib
Feature-Rich Discriminative Phrase Rescoring for SMT
Fei Huang | Bing Xiang
Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010)

pdf bib
Open-Domain Semantic Role Labeling by Modeling Word Spans
Fei Huang | Alexander Yates
Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics

pdf bib
Exploring Representation-Learning Approaches to Domain Adaptation
Fei Huang | Alexander Yates
Proceedings of the 2010 Workshop on Domain Adaptation for Natural Language Processing

2009

pdf bib
Distributional Representations for Handling Sparsity in Supervised Sequence-Labeling
Fei Huang | Alexander Yates
Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP

pdf bib
Confidence Measure for Word Alignment
Fei Huang
Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP

2008

pdf bib
When Harry Met Harri: Cross-lingual Name Spelling Normalization
Fei Huang | Ahmad Emami | Imed Zitouni
Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing

2007

pdf bib
Hierarchical System Combination for Machine Translation
Fei Huang | Kishore Papineni
Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL)

2005

pdf bib
Cluster-specific Named Entity Transliteration
Fei Huang
Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing

pdf bib
Mining Key Phrase Translations from Web Corpora
Fei Huang | Ying Zhang | Stephan Vogel
Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing

2004

pdf bib
Improving Named Entity Translation Combining Phonetic and Semantic Similarities
Fei Huang | Stephan Vogel | Alex Waibel
Proceedings of the Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics: HLT-NAACL 2004

pdf bib
Toward named entity extraction and translation in spoken language translation
Fei Huang | Stephan Vogel | Alex Waibel
Proceedings of the First International Workshop on Spoken Language Translation: Papers

2003

pdf bib
The CMU statistical machine translation system
Stephan Vogel | Ying Zhang | Fei Huang | Alicia Tribble | Ashish Venugopal | Bing Zhao | Alex Waibel
Proceedings of Machine Translation Summit IX: Papers

In this paper we describe the components of our statistical machine translation system. This system combines phrase-to-phrase translations extracted from a bilingual corpus using different alignment approaches. Special methods to extract and align named entities are used. We show how a manual lexicon can be incorporated into the statistical system in an optimized way. Experiments on Chinese-to-English and Arabic-to-English translation tasks are presented.

pdf bib
Automatic Extraction of Named Entity Translingual Equivalence Based on Multi-Feature Cost Minimization
Fei Huang | Stephan Vogel | Alex Waibel
Proceedings of the ACL 2003 Workshop on Multilingual and Mixed-language Named Entity Recognition

Search
Co-authors