Real world scenarios present a challenge for text classification, since labels are usually expensive and the data is often characterized by class imbalance. Active Learning (AL) is a ubiquitous paradigm to cope with data scarcity. Recently, pre-trained NLP models, and BERT in particular, are receiving massive attention due to their outstanding performance in various NLP tasks. However, the use of AL with deep pre-trained models has so far received little consideration. Here, we present a large-scale empirical study on active learning techniques for BERT-based classification, addressing a diverse set of AL strategies and datasets. We focus on practical scenarios of binary text classification, where the annotation budget is very small, and the data is often skewed. Our results demonstrate that AL can boost BERT performance, especially in the most realistic scenario in which the initial set of labeled examples is created using keyword-based queries, resulting in a biased sample of the minority class. We release our research framework, aiming to facilitate future research along the lines explored here.
Approaching new data can be quite deterrent; you do not know how your categories of interest are realized in it, commonly, there is no labeled data at hand, and the performance of domain adaptation methods is unsatisfactory. Aiming to assist domain experts in their first steps into a new task over a new corpus, we present an unsupervised approach to reveal complex rules which cluster the unexplored corpus by its prominent categories (or facets). These rules are human-readable, thus providing an important ingredient which has become in short supply lately - explainability. Each rule provides an explanation for the commonality of all the texts it clusters together. The experts can then identify which rules best capture texts of their categories of interest, and utilize them to deepen their understanding of these categories. These rules can also bootstrap the process of data labeling by pointing at a subset of the corpus which is enriched with texts demonstrating the target categories. We present an extensive evaluation of the usefulness of these rules in identifying target categories, as well as a user study which assesses their interpretability.
With the advancement in argument detection, we suggest to pay more attention to the challenging task of identifying the more convincing arguments. Machines capable of responding and interacting with humans in helpful ways have become ubiquitous. We now expect them to discuss with us the more delicate questions in our world, and they should do so armed with effective arguments. But what makes an argument more persuasive? What will convince you? In this paper, we present a new data set, IBM-EviConv, of pairs of evidence labeled for convincingness, designed to be more challenging than existing alternatives. We also propose a Siamese neural network architecture shown to outperform several baselines on both a prior convincingness data set and our own. Finally, we provide insights into our experimental results and the various kinds of argumentative value our method is capable of detecting.
The process of obtaining high quality labeled data for natural language understanding tasks is often slow, error-prone, complicated and expensive. With the vast usage of neural networks, this issue becomes more notorious since these networks require a large amount of labeled data to produce satisfactory results. We propose a methodology to blend high quality but scarce strong labeled data with noisy but abundant weak labeled data during the training of neural networks. Experiments in the context of topic-dependent evidence detection with two forms of weak labeled data show the advantages of the blending scheme. In addition, we provide a manually annotated data set for the task of topic-dependent evidence detection. We believe that blending weak and strong labeled data is a general notion that may be applicable to many language understanding tasks, and can especially assist researchers who wish to train a network but have a small amount of high quality labeled data for their task of interest.
GRASP (GReedy Augmented Sequential Patterns) is an algorithm for automatically extracting patterns that characterize subtle linguistic phenomena. To that end, GRASP augments each term of input text with multiple layers of linguistic information. These different facets of the text terms are systematically combined to reveal rich patterns. We report highly promising experimental results in several challenging text analysis tasks within the field of Argumentation Mining. We believe that GRASP is general enough to be useful for other domains too. For example, each of the following sentences includes a claim for a [topic]: 1. Opponents often argue that the open primary is unconstitutional. [Open Primaries] 2. Prof. Smith suggested that affirmative action devalues the accomplishments of the chosen. [Affirmative Action] 3. The majority stated that the First Amendment does not guarantee the right to offend others. [Freedom of Speech] These sentences share almost no words in common, however, they are similar at a more abstract level. A human observer may notice the following underlying common structure, or pattern: [someone][argue/suggest/state][that][topic term][sentiment term]. GRASP aims to automatically capture such underlying structures of the given data. For the above examples it finds the pattern [noun][express][that][noun,topic][sentiment], where [express] stands for all its (in)direct hyponyms, and [noun,topic] means a noun which is also related to the topic.