Ehsan Shareghi


2021

pdf bib
Combining Deep Generative Models and Multi-lingual Pretraining for Semi-supervised Document Classification
Yi Zhu | Ehsan Shareghi | Yingzhen Li | Roi Reichart | Anna Korhonen
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Semi-supervised learning through deep generative models and multi-lingual pretraining techniques have orchestrated tremendous success across different areas of NLP. Nonetheless, their development has happened in isolation, while the combination of both could potentially be effective for tackling task-specific labelled data shortage. To bridge this gap, we combine semi-supervised deep generative models and multi-lingual pretraining to form a pipeline for document classification task. Compared to strong supervised learning baselines, our semi-supervised classification framework is highly competitive and outperforms the state-of-the-art counterparts in low-resource settings across several languages.

pdf bib
Integrating Transformers and Knowledge Graphs for Twitter Stance Detection
Thomas Clark | Costanza Conforti | Fangyu Liu | Zaiqiao Meng | Ehsan Shareghi | Nigel Collier
Proceedings of the Seventh Workshop on Noisy User-generated Text (W-NUT 2021)

Stance detection (SD) entails classifying the sentiment of a text towards a given target, and is a relevant sub-task for opinion mining and social media analysis. Recent works have explored knowledge infusion supplementing the linguistic competence and latent knowledge of large pre-trained language models with structured knowledge graphs (KGs), yet few works have applied such methods to the SD task. In this work, we first perform stance-relevant knowledge probing on Transformers-based pre-trained models in a zero-shot setting, showing these models’ latent real-world knowledge about SD targets and their sensitivity to context. We then train and evaluate new knowledge-enriched stance detection models on two Twitter stance datasets, achieving state-of-the-art performance on both.

pdf bib
Self-Alignment Pretraining for Biomedical Entity Representations
Fangyu Liu | Ehsan Shareghi | Zaiqiao Meng | Marco Basaldella | Nigel Collier
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Despite the widespread success of self-supervised learning via masked language models (MLM), accurately capturing fine-grained semantic relationships in the biomedical domain remains a challenge. This is of paramount importance for entity-level tasks such as entity linking where the ability to model entity relations (especially synonymy) is pivotal. To address this challenge, we propose SapBERT, a pretraining scheme that self-aligns the representation space of biomedical entities. We design a scalable metric learning framework that can leverage UMLS, a massive collection of biomedical ontologies with 4M+ concepts. In contrast with previous pipeline-based hybrid systems, SapBERT offers an elegant one-model-for-all solution to the problem of medical entity linking (MEL), achieving a new state-of-the-art (SOTA) on six MEL benchmarking datasets. In the scientific domain, we achieve SOTA even without task-specific supervision. With substantial improvement over various domain-specific pretrained MLMs such as BioBERT, SciBERTand and PubMedBERT, our pretraining scheme proves to be both effective and robust.

pdf bib
A Closer Look at Few-Shot Crosslingual Transfer: The Choice of Shots Matters
Mengjie Zhao | Yi Zhu | Ehsan Shareghi | Ivan Vulić | Roi Reichart | Anna Korhonen | Hinrich Schütze
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Few-shot crosslingual transfer has been shown to outperform its zero-shot counterpart with pretrained encoders like multilingual BERT. Despite its growing popularity, little to no attention has been paid to standardizing and analyzing the design of few-shot experiments. In this work, we highlight a fundamental risk posed by this shortcoming, illustrating that the model exhibits a high degree of sensitivity to the selection of few shots. We conduct a large-scale experimental study on 40 sets of sampled few shots for six diverse NLP tasks across up to 40 languages. We provide an analysis of success and failure cases of few-shot transfer, which highlights the role of lexical features. Additionally, we show that a straightforward full model finetuning approach is quite effective for few-shot transfer, outperforming several state-of-the-art few-shot approaches. As a step towards standardizing few-shot crosslingual experimental designs, we make our sampled few shots publicly available.

pdf bib
Mixture-of-Partitions: Infusing Large Biomedical Knowledge Graphs into BERT
Zaiqiao Meng | Fangyu Liu | Thomas Clark | Ehsan Shareghi | Nigel Collier
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Infusing factual knowledge into pre-trained models is fundamental for many knowledge-intensive tasks. In this paper, we proposed Mixture-of-Partitions (MoP), an infusion approach that can handle a very large knowledge graph (KG) by partitioning it into smaller sub-graphs and infusing their specific knowledge into various BERT models using lightweight adapters. To leverage the overall factual knowledge for a target task, these sub-graph adapters are further fine-tuned along with the underlying BERT through a mixture layer. We evaluate our MoP with three biomedical BERTs (SciBERT, BioBERT, PubmedBERT) on six downstream tasks (inc. NLI, QA, Classification), and the results show that our MoP consistently enhances the underlying BERTs in task performance, and achieves new SOTA performances on five evaluated datasets.

pdf bib
It Is Not As Good As You Think! Evaluating Simultaneous Machine Translation on Interpretation Data
Jinming Zhao | Philip Arthur | Gholamreza Haffari | Trevor Cohn | Ehsan Shareghi
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Most existing simultaneous machine translation (SiMT) systems are trained and evaluated on offline translation corpora. We argue that SiMT systems should be trained and tested on real interpretation data. To illustrate this argument, we propose an interpretation test set and conduct a realistic evaluation of SiMT trained on offline translations. Our results, on our test set along with 3 existing smaller scale language pairs, highlight the difference of up-to 13.83 BLEU score when SiMT models are evaluated on translation vs interpretation data. In the absence of interpretation training data, we propose a translation-to-interpretation (T2I) style transfer method which allows converting existing offline translations into interpretation-style data, leading to up-to 2.8 BLEU improvement. However, the evaluation gap remains notable, calling for constructing large-scale interpretation corpora better suited for evaluating and developing SiMT systems.

pdf bib
Learning Sparse Sentence Encoding without Supervision: An Exploration of Sparsity in Variational Autoencoders
Victor Prokhorov | Yingzhen Li | Ehsan Shareghi | Nigel Collier
Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021)

It has been long known that sparsity is an effective inductive bias for learning efficient representation of data in vectors with fixed dimensionality, and it has been explored in many areas of representation learning. Of particular interest to this work is the investigation of the sparsity within the VAE framework which has been explored a lot in the image domain, but has been lacking even a basic level of exploration in NLP. Additionally, NLP is also lagging behind in terms of learning sparse representations of large units of text e.g., sentences. We use the VAEs that induce sparse latent representations of large units of text to address the aforementioned shortcomings. First, we move in this direction by measuring the success of unsupervised state-of-the-art (SOTA) and other strong VAE-based sparsification baselines for text and propose a hierarchical sparse VAE model to address the stability issue of SOTA. Then, we look at the implications of sparsity on text classification across 3 datasets, and highlight a link between performance of sparse latent representations on downstream tasks and its ability to encode task-related information.

pdf bib
Unsupervised Representation Disentanglement of Text: An Evaluation on Synthetic Datasets
Lan Zhang | Victor Prokhorov | Ehsan Shareghi
Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021)

To highlight the challenges of achieving representation disentanglement for text domain in an unsupervised setting, in this paper we select a representative set of successfully applied models from the image domain. We evaluate these models on 6 disentanglement metrics, as well as on downstream classification tasks and homotopy. To facilitate the evaluation, we propose two synthetic datasets with known generative factors. Our experiments highlight the existing gap in the text domain and illustrate that certain elements such as representation sparsity (as an inductive bias), or representation coupling with the decoder could impact disentanglement. To the best of our knowledge, our work is the first attempt on the intersection of unsupervised representation disentanglement and text, and provides the experimental framework and datasets for examining future developments in this direction.

2020

pdf bib
COMETA: A Corpus for Medical Entity Linking in the Social Media
Marco Basaldella | Fangyu Liu | Ehsan Shareghi | Nigel Collier
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Whilst there has been growing progress in Entity Linking (EL) for general language, existing datasets fail to address the complex nature of health terminology in layman’s language. Meanwhile, there is a growing need for applications that can understand the public’s voice in the health domain. To address this we introduce a new corpus called COMETA, consisting of 20k English biomedical entity mentions from Reddit expert-annotated with links to SNOMED CT, a widely-used medical knowledge graph. Our corpus satisfies a combination of desirable properties, from scale and coverage to diversity and quality, that to the best of our knowledge has not been met by any of the existing resources in the field. Through benchmark experiments on 20 EL baselines from string- to neural-based models we shed light on the ability of these systems to perform complex inference on entities and concepts under 2 challenging evaluation scenarios. Our experimental results on COMETA illustrate that no golden bullet exists and even the best mainstream techniques still have a significant performance gap to fill, while the best solution relies on combining different views of data.

2019

pdf bib
Bayesian Learning for Neural Dependency Parsing
Ehsan Shareghi | Yingzhen Li | Yi Zhu | Roi Reichart | Anna Korhonen
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

While neural dependency parsers provide state-of-the-art accuracy for several languages, they still rely on large amounts of costly labeled training data. We demonstrate that in the small data regime, where uncertainty around parameter estimation and model prediction matters the most, Bayesian neural modeling is very effective. In order to overcome the computational and statistical costs of the approximate inference step in this framework, we utilize an efficient sampling procedure via stochastic gradient Langevin dynamics to generate samples from the approximated posterior. Moreover, we show that our Bayesian neural parser can be further improved when integrated into a multi-task parsing and POS tagging framework, designed to minimize task interference via an adversarial procedure. When trained and tested on 6 languages with less than 5k training instances, our parser consistently outperforms the strong bilstm baseline (Kiperwasser and Goldberg, 2016). Compared with the biaffine parser (Dozat et al., 2017) our model achieves an improvement of up to 3% for Vietnames and Irish, while our multi-task model achieves an improvement of up to 9% across five languages: Farsi, Russian, Turkish, Vietnamese, and Irish.

pdf bib
Show Some Love to Your n-grams: A Bit of Progress and Stronger n-gram Language Modeling Baselines
Ehsan Shareghi | Daniela Gerz | Ivan Vulić | Anna Korhonen
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

In recent years neural language models (LMs) have set the state-of-the-art performance for several benchmarking datasets. While the reasons for their success and their computational demand are well-documented, a comparison between neural models and more recent developments in n-gram models is neglected. In this paper, we examine the recent progress in n-gram literature, running experiments on 50 languages covering all morphological language families. Experimental results illustrate that a simple extension of Modified Kneser-Ney outperforms an lstm language model on 42 languages while a word-level Bayesian n-gram LM (Shareghi et al., 2017) outperforms the character-aware neural model (Kim et al., 2016) on average across all languages, and its extension which explicitly injects linguistic knowledge (Gerz et al., 2018) on 8 languages. Further experiments on larger Europarl datasets for 3 languages indicate that neural architectures are able to outperform computationally much cheaper n-gram models: n-gram training is up to 15,000x quicker. Our experiments illustrate that standalone n-gram models lend themselves as natural choices for resource-lean or morphologically rich languages, while the recent progress has significantly improved their accuracy.

pdf bib
On the Importance of the Kullback-Leibler Divergence Term in Variational Autoencoders for Text Generation
Victor Prokhorov | Ehsan Shareghi | Yingzhen Li | Mohammad Taher Pilehvar | Nigel Collier
Proceedings of the 3rd Workshop on Neural Generation and Translation

Variational Autoencoders (VAEs) are known to suffer from learning uninformative latent representation of the input due to issues such as approximated posterior collapse, or entanglement of the latent space. We impose an explicit constraint on the Kullback-Leibler (KL) divergence term inside the VAE objective function. While the explicit constraint naturally avoids posterior collapse, we use it to further understand the significance of the KL term in controlling the information transmitted through the VAE channel. Within this framework, we explore different properties of the estimated posterior distribution, and highlight the trade-off between the amount of information encoded in a latent code during training, and the generative capacity of the model.

2016

pdf bib
Richer Interpolative Smoothing Based on Modified Kneser-Ney Language Modeling
Ehsan Shareghi | Trevor Cohn | Gholamreza Haffari
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

pdf bib
Fast, Small and Exact: Infinite-order Language Modelling with Compressed Suffix Trees
Ehsan Shareghi | Matthias Petri | Gholamreza Haffari | Trevor Cohn
Transactions of the Association for Computational Linguistics, Volume 4

Efficient methods for storing and querying are critical for scaling high-order m-gram language models to large corpora. We propose a language model based on compressed suffix trees, a representation that is highly compact and can be easily held in memory, while supporting queries needed in computing language model probabilities on-the-fly. We present several optimisations which improve query runtimes up to 2500×, despite only incurring a modest increase in construction time and memory usage. For large corpora and high Markov orders, our method is highly competitive with the state-of-the-art KenLM package. It imposes much lower memory requirements, often by orders of magnitude, and has runtimes that are either similar (for training) or comparable (for querying).

2015

pdf bib
Compact, Efficient and Unlimited Capacity: Language Modeling with Compressed Suffix Trees
Ehsan Shareghi | Matthias Petri | Gholamreza Haffari | Trevor Cohn
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

2013

pdf bib
CLaC-CORE: Exhaustive Feature Combination for Measuring Textual Similarity
Ehsan Shareghi | Sabine Bergler
Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 1: Proceedings of the Main Conference and the Shared Task: Semantic Textual Similarity