Dongkuan Xu


2021

pdf bib
Rethinking Network Pruning – under the Pre-train and Fine-tune Paradigm
Dongkuan Xu | Ian En-Hsu Yen | Jinxi Zhao | Zhibin Xiao
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Transformer-based pre-trained language models have significantly improved the performance of various natural language processing (NLP) tasks in the recent years. While effective and prevalent, these models are usually prohibitively large for resource-limited deployment scenarios. A thread of research has thus been working on applying network pruning techniques under the pretrain-then-finetune paradigm widely adopted in NLP. However, the existing pruning results on benchmark transformers, such as BERT, are not as remarkable as the pruning results in the literature of convolutional neural networks (CNNs). In particular, common wisdom in pruning CNN states that sparse pruning technique compresses a model more than that obtained by reducing number of channels and layers, while existing works on sparse pruning of BERT yields inferior results than its small-dense counterparts such as TinyBERT. In this work, we aim to fill this gap by studying how knowledge are transferred and lost during the pre-train, fine-tune, and pruning process, and proposing a knowledge-aware sparse pruning process that achieves significantly superior results than existing literature. We show for the first time that sparse pruning compresses a BERT model significantly more than reducing its number of channels and layers. Experiments on multiple data sets of GLUE benchmark show that our method outperforms the leading competitors with a 20-times weight/FLOPs compression and neglectable loss in prediction accuracy.

pdf bib
Data Augmentation with Adversarial Training for Cross-Lingual NLI
Xin Dong | Yaxin Zhu | Zuohui Fu | Dongkuan Xu | Gerard de Melo
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Due to recent pretrained multilingual representation models, it has become feasible to exploit labeled data from one language to train a cross-lingual model that can then be applied to multiple new languages. In practice, however, we still face the problem of scarce labeled data, leading to subpar results. In this paper, we propose a novel data augmentation strategy for better cross-lingual natural language inference by enriching the data to reflect more diversity in a semantically faithful way. To this end, we propose two methods of training a generative model to induce synthesized examples, and then leverage the resulting data using an adversarial training regimen for more robustness. In a series of detailed experiments, we show that this fruitful combination leads to substantial gains in cross-lingual inference.