Colin Raffel


2021

pdf bib
mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer
Linting Xue | Noah Constant | Adam Roberts | Mihir Kale | Rami Al-Rfou | Aditya Siddhant | Aditya Barua | Colin Raffel
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The recent “Text-to-Text Transfer Transformer” (T5) leveraged a unified text-to-text format and scale to attain state-of-the-art results on a wide variety of English-language NLP tasks. In this paper, we introduce mT5, a multilingual variant of T5 that was pre-trained on a new Common Crawl-based dataset covering 101 languages. We detail the design and modified training of mT5 and demonstrate its state-of-the-art performance on many multilingual benchmarks. We also describe a simple technique to prevent “accidental translation” in the zero-shot setting, where a generative model chooses to (partially) translate its prediction into the wrong language. All of the code and model checkpoints used in this work are publicly available.

pdf bib
Improving and Simplifying Pattern Exploiting Training
Derek Tam | Rakesh R. Menon | Mohit Bansal | Shashank Srivastava | Colin Raffel
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Recently, pre-trained language models (LMs) have achieved strong performance when fine-tuned on difficult benchmarks like SuperGLUE. However, performance can suffer when there are very few labeled examples available for fine-tuning. Pattern Exploiting Training (PET) is a recent approach that leverages patterns for few-shot learning. However, PET uses task-specific unlabeled data. In this paper, we focus on few-shot learning without any unlabeled data and introduce ADAPET, which modifies PET’s objective to provide denser supervision during fine-tuning. As a result, ADAPET outperforms PET on SuperGLUE without any task-specific unlabeled data.

pdf bib
Do Transformer Modifications Transfer Across Implementations and Applications?
Sharan Narang | Hyung Won Chung | Yi Tay | Liam Fedus | Thibault Fevry | Michael Matena | Karishma Malkan | Noah Fiedel | Noam Shazeer | Zhenzhong Lan | Yanqi Zhou | Wei Li | Nan Ding | Jake Marcus | Adam Roberts | Colin Raffel
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

The research community has proposed copious modifications to the Transformer architecture since it was introduced over three years ago, relatively few of which have seen widespread adoption. In this paper, we comprehensively evaluate many of these modifications in a shared experimental setting that covers most of the common uses of the Transformer in natural language processing. Surprisingly, we find that most modifications do not meaningfully improve performance. Furthermore, most of the Transformer variants we found beneficial were either developed in the same codebase that we used or are relatively minor changes. We conjecture that performance improvements may strongly depend on implementation details and correspondingly make some recommendations for improving the generality of experimental results.

2020

pdf bib
How Much Knowledge Can You Pack Into the Parameters of a Language Model?
Adam Roberts | Colin Raffel | Noam Shazeer
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

It has recently been observed that neural language models trained on unstructured text can implicitly store and retrieve knowledge using natural language queries. In this short paper, we measure the practical utility of this approach by fine-tuning pre-trained models to answer questions without access to any external context or knowledge. We show that this approach scales with model size and performs competitively with open-domain systems that explicitly retrieve answers from an external knowledge source when answering questions. To facilitate reproducibility and future work, we release our code and trained models.

2019

pdf bib
Monotonic Infinite Lookback Attention for Simultaneous Machine Translation
Naveen Arivazhagan | Colin Cherry | Wolfgang Macherey | Chung-Cheng Chiu | Semih Yavuz | Ruoming Pang | Wei Li | Colin Raffel
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Simultaneous machine translation begins to translate each source sentence before the source speaker is finished speaking, with applications to live and streaming scenarios. Simultaneous systems must carefully schedule their reading of the source sentence to balance quality against latency. We present the first simultaneous translation system to learn an adaptive schedule jointly with a neural machine translation (NMT) model that attends over all source tokens read thus far. We do so by introducing Monotonic Infinite Lookback (MILk) attention, which maintains both a hard, monotonic attention head to schedule the reading of the source sentence, and a soft attention head that extends from the monotonic head back to the beginning of the source. We show that MILk’s adaptive schedule allows it to arrive at latency-quality trade-offs that are favorable to those of a recently proposed wait-k strategy for many latency values.