Cliff Wong


2021

pdf bib
Modular Self-Supervision for Document-Level Relation Extraction
Sheng Zhang | Cliff Wong | Naoto Usuyama | Sarthak Jain | Tristan Naumann | Hoifung Poon
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Extracting relations across large text spans has been relatively underexplored in NLP, but it is particularly important for high-value domains such as biomedicine, where obtaining high recall of the latest findings is crucial for practical applications. Compared to conventional information extraction confined to short text spans, document-level relation extraction faces additional challenges in both inference and learning. Given longer text spans, state-of-the-art neural architectures are less effective and task-specific self-supervision such as distant supervision becomes very noisy. In this paper, we propose decomposing document-level relation extraction into relation detection and argument resolution, taking inspiration from Davidsonian semantics. This enables us to incorporate explicit discourse modeling and leverage modular self-supervision for each sub-problem, which is less noise-prone and can be further refined end-to-end via variational EM. We conduct a thorough evaluation in biomedical machine reading for precision oncology, where cross-paragraph relation mentions are prevalent. Our method outperforms prior state of the art, such as multi-scale learning and graph neural networks, by over 20 absolute F1 points. The gain is particularly pronounced among the most challenging relation instances whose arguments never co-occur in a paragraph.

2019

pdf bib
Document-Level N-ary Relation Extraction with Multiscale Representation Learning
Robin Jia | Cliff Wong | Hoifung Poon
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Most information extraction methods focus on binary relations expressed within single sentences. In high-value domains, however, n-ary relations are of great demand (e.g., drug-gene-mutation interactions in precision oncology). Such relations often involve entity mentions that are far apart in the document, yet existing work on cross-sentence relation extraction is generally confined to small text spans (e.g., three consecutive sentences), which severely limits recall. In this paper, we propose a novel multiscale neural architecture for document-level n-ary relation extraction. Our system combines representations learned over various text spans throughout the document and across the subrelation hierarchy. Widening the system’s purview to the entire document maximizes potential recall. Moreover, by integrating weak signals across the document, multiscale modeling increases precision, even in the presence of noisy labels from distant supervision. Experiments on biomedical machine reading show that our approach substantially outperforms previous n-ary relation extraction methods.