Chun Fan


2021

pdf bib
ConRPG: Paraphrase Generation using Contexts as Regularizer
Yuxian Meng | Xiang Ao | Qing He | Xiaofei Sun | Qinghong Han | Fei Wu | Chun Fan | Jiwei Li
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

A long-standing issue with paraphrase generation is the lack of reliable supervision signals. In this paper, we propose a new unsupervised paradigm for paraphrase generation based on the assumption that the probabilities of generating two sentences with the same meaning given the same context should be the same. Inspired by this fundamental idea, we propose a pipelined system which consists of paraphrase candidate generation based on contextual language models, candidate filtering using scoring functions, and paraphrase model training based on the selected candidates. The proposed paradigm offers merits over existing paraphrase generation methods: (1) using the context regularizer on meanings, the model is able to generate massive amounts of high-quality paraphrase pairs; (2) the combination of the huge amount of paraphrase candidates and further diversity-promoting filtering yields paraphrases with more lexical and syntactic diversity; and (3) using human-interpretable scoring functions to select paraphrase pairs from candidates, the proposed framework provides a channel for developers to intervene with the data generation process, leading to a more controllable model. Experimental results across different tasks and datasets demonstrate that the proposed paradigm significantly outperforms existing paraphrase approaches in both supervised and unsupervised setups.

pdf bib
Layer-wise Model Pruning based on Mutual Information
Chun Fan | Jiwei Li | Tianwei Zhang | Xiang Ao | Fei Wu | Yuxian Meng | Xiaofei Sun
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Inspired by mutual information (MI) based feature selection in SVMs and logistic regression, in this paper, we propose MI-based layer-wise pruning: for each layer of a multi-layer neural network, neurons with higher values of MI with respect to preserved neurons in the upper layer are preserved. Starting from the top softmax layer, layer-wise pruning proceeds in a top-down fashion until reaching the bottom word embedding layer. The proposed pruning strategy offers merits over weight-based pruning techniques: (1) it avoids irregular memory access since representations and matrices can be squeezed into their smaller but dense counterparts, leading to greater speedup; (2) in a manner of top-down pruning, the proposed method operates from a more global perspective based on training signals in the top layer, and prunes each layer by propagating the effect of global signals through layers, leading to better performances at the same sparsity level. Extensive experiments show that at the same sparsity level, the proposed strategy offers both greater speedup and higher performances than weight-based pruning methods (e.g., magnitude pruning, movement pruning).

pdf bib
kFolden: k-Fold Ensemble for Out-Of-Distribution Detection
Xiaoya Li | Jiwei Li | Xiaofei Sun | Chun Fan | Tianwei Zhang | Fei Wu | Yuxian Meng | Jun Zhang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Out-of-Distribution (OOD) detection is an important problem in natural language processing (NLP). In this work, we propose a simple yet effective framework kFolden, which mimics the behaviors of OOD detection during training without the use of any external data. For a task with k training labels, kFolden induces k sub-models, each of which is trained on a subset with k-1 categories with the left category masked unknown to the sub-model. Exposing an unknown label to the sub-model during training, the model is encouraged to learn to equally attribute the probability to the seen k-1 labels for the unknown label, enabling this framework to simultaneously resolve in- and out-distribution examples in a natural way via OOD simulations. Taking text classification as an archetype, we develop benchmarks for OOD detection using existing text classification datasets. By conducting comprehensive comparisons and analyses on the developed benchmarks, we demonstrate the superiority of kFolden against current methods in terms of improving OOD detection performances while maintaining improved in-domain classification accuracy.