Chaojun Xiao


2020

pdf bib
More Data, More Relations, More Context and More Openness: A Review and Outlook for Relation Extraction
Xu Han | Tianyu Gao | Yankai Lin | Hao Peng | Yaoliang Yang | Chaojun Xiao | Zhiyuan Liu | Peng Li | Jie Zhou | Maosong Sun
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing

Relational facts are an important component of human knowledge, which are hidden in vast amounts of text. In order to extract these facts from text, people have been working on relation extraction (RE) for years. From early pattern matching to current neural networks, existing RE methods have achieved significant progress. Yet with explosion of Web text and emergence of new relations, human knowledge is increasing drastically, and we thus require “more” from RE: a more powerful RE system that can robustly utilize more data, efficiently learn more relations, easily handle more complicated context, and flexibly generalize to more open domains. In this paper, we look back at existing RE methods, analyze key challenges we are facing nowadays, and show promising directions towards more powerful RE. We hope our view can advance this field and inspire more efforts in the community.

pdf bib
Denoising Relation Extraction from Document-level Distant Supervision
Chaojun Xiao | Yuan Yao | Ruobing Xie | Xu Han | Zhiyuan Liu | Maosong Sun | Fen Lin | Leyu Lin
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Distant supervision (DS) has been widely adopted to generate auto-labeled data for sentence-level relation extraction (RE) and achieved great results. However, the existing success of DS cannot be directly transferred to more challenging document-level relation extraction (DocRE), as the inevitable noise caused by DS may be even multiplied in documents and significantly harm the performance of RE. To alleviate this issue, we propose a novel pre-trained model for DocRE, which de-emphasize noisy DS data via multiple pre-training tasks. The experimental results on the large-scale DocRE benchmark show that our model can capture useful information from noisy data and achieve promising results.

pdf bib
How Does NLP Benefit Legal System: A Summary of Legal Artificial Intelligence
Haoxi Zhong | Chaojun Xiao | Cunchao Tu | Tianyang Zhang | Zhiyuan Liu | Maosong Sun
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Legal Artificial Intelligence (LegalAI) focuses on applying the technology of artificial intelligence, especially natural language processing, to benefit tasks in the legal domain. In recent years, LegalAI has drawn increasing attention rapidly from both AI researchers and legal professionals, as LegalAI is beneficial to the legal system for liberating legal professionals from a maze of paperwork. Legal professionals often think about how to solve tasks from rule-based and symbol-based methods, while NLP researchers concentrate more on data-driven and embedding methods. In this paper, we introduce the history, the current state, and the future directions of research in LegalAI. We illustrate the tasks from the perspectives of legal professionals and NLP researchers and show several representative applications in LegalAI. We conduct experiments and provide an in-depth analysis of the advantages and disadvantages of existing works to explore possible future directions. You can find the implementation of our work from https://github.com/thunlp/CLAIM.

2018

pdf bib
Legal Judgment Prediction via Topological Learning
Haoxi Zhong | Zhipeng Guo | Cunchao Tu | Chaojun Xiao | Zhiyuan Liu | Maosong Sun
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Legal Judgment Prediction (LJP) aims to predict the judgment result based on the facts of a case and becomes a promising application of artificial intelligence techniques in the legal field. In real-world scenarios, legal judgment usually consists of multiple subtasks, such as the decisions of applicable law articles, charges, fines, and the term of penalty. Moreover, there exist topological dependencies among these subtasks. While most existing works only focus on a specific subtask of judgment prediction and ignore the dependencies among subtasks, we formalize the dependencies among subtasks as a Directed Acyclic Graph (DAG) and propose a topological multi-task learning framework, TopJudge, which incorporates multiple subtasks and DAG dependencies into judgment prediction. We conduct experiments on several real-world large-scale datasets of criminal cases in the civil law system. Experimental results show that our model achieves consistent and significant improvements over baselines on all judgment prediction tasks. The source code can be obtained from https://github.com/thunlp/TopJudge.