Changjian Hu


2021

pdf bib
Syntactically-Informed Unsupervised Paraphrasing with Non-Parallel Data
Erguang Yang | Mingtong Liu | Deyi Xiong | Yujie Zhang | Yao Meng | Changjian Hu | Jinan Xu | Yufeng Chen
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Previous works on syntactically controlled paraphrase generation heavily rely on large-scale parallel paraphrase data that is not easily available for many languages and domains. In this paper, we take this research direction to the extreme and investigate whether it is possible to learn syntactically controlled paraphrase generation with nonparallel data. We propose a syntactically-informed unsupervised paraphrasing model based on conditional variational auto-encoder (VAE) which can generate texts in a specified syntactic structure. Particularly, we design a two-stage learning method to effectively train the model using non-parallel data. The conditional VAE is trained to reconstruct the input sentence according to the given input and its syntactic structure. Furthermore, to improve the syntactic controllability and semantic consistency of the pre-trained conditional VAE, we fine-tune it using syntax controlling and cycle reconstruction learning objectives, and employ Gumbel-Softmax to combine these new learning objectives. Experiment results demonstrate that the proposed model trained only on non-parallel data is capable of generating diverse paraphrases with specified syntactic structure. Additionally, we validate the effectiveness of our method for generating syntactically adversarial examples on the sentiment analysis task.

2020

pdf bib
Bootstrapping Named Entity Recognition in E-Commerce with Positive Unlabeled Learning
Hanchu Zhang | Leonhard Hennig | Christoph Alt | Changjian Hu | Yao Meng | Chao Wang
Proceedings of The 3rd Workshop on e-Commerce and NLP

In this work, we introduce a bootstrapped, iterative NER model that integrates a PU learning algorithm for recognizing named entities in a low-resource setting. Our approach combines dictionary-based labeling with syntactically-informed label expansion to efficiently enrich the seed dictionaries. Experimental results on a dataset of manually annotated e-commerce product descriptions demonstrate the effectiveness of the proposed framework.

pdf bib
Intent Segmentation of User Queries Via Discourse Parsing
Vicente Ivan Sanchez Carmona | Yibing Yang | Ziyue Wen | Ruosen Li | Xiaohua Wang | Changjian Hu
Proceedings of the Second International Workshop of Discourse Processing

In this paper, we explore a new approach based on discourse analysis for the task of intent segmentation. Our target texts are user queries from a real-world chatbot. Our results show the feasibility of our approach with an F1-score of 82.97 points, and some advantages and disadvantages compared to two machine learning baselines: BERT and LSTM+CRF.

pdf bib
Cycle-Consistent Adversarial Autoencoders for Unsupervised Text Style Transfer
Yufang Huang | Wentao Zhu | Deyi Xiong | Yiye Zhang | Changjian Hu | Feiyu Xu
Proceedings of the 28th International Conference on Computational Linguistics

Unsupervised text style transfer is full of challenges due to the lack of parallel data and difficulties in content preservation. In this paper, we propose a novel neural approach to unsupervised text style transfer which we refer to as Cycle-consistent Adversarial autoEncoders (CAE) trained from non-parallel data. CAE consists of three essential components: (1) LSTM autoencoders that encode a text in one style into its latent representation and decode an encoded representation into its original text or a transferred representation into a style-transferred text, (2) adversarial style transfer networks that use an adversarially trained generator to transform a latent representation in one style into a representation in another style, and (3) a cycle-consistent constraint that enhances the capacity of the adversarial style transfer networks in content preservation. The entire CAE with these three components can be trained end-to-end. Extensive experiments and in-depth analyses on two widely-used public datasets consistently validate the effectiveness of proposed CAE in both style transfer and content preservation against several strong baselines in terms of four automatic evaluation metrics and human evaluation.

pdf bib
A Learning-Exploring Method to Generate Diverse Paraphrases with Multi-Objective Deep Reinforcement Learning
Mingtong Liu | Erguang Yang | Deyi Xiong | Yujie Zhang | Yao Meng | Changjian Hu | Jinan Xu | Yufeng Chen
Proceedings of the 28th International Conference on Computational Linguistics

Paraphrase generation (PG) is of great importance to many downstream tasks in natural language processing. Diversity is an essential nature to PG for enhancing generalization capability and robustness of downstream applications. Recently, neural sequence-to-sequence (Seq2Seq) models have shown promising results in PG. However, traditional model training for PG focuses on optimizing model prediction against single reference and employs cross-entropy loss, which objective is unable to encourage model to generate diverse paraphrases. In this work, we present a novel approach with multi-objective learning to PG. We propose a learning-exploring method to generate sentences as learning objectives from the learned data distribution, and employ reinforcement learning to combine these new learning objectives for model training. We first design a sample-based algorithm to explore diverse sentences. Then we introduce several reward functions to evaluate the sampled sentences as learning signals in terms of expressive diversity and semantic fidelity, aiming to generate diverse and high-quality paraphrases. To effectively optimize model performance satisfying different evaluating aspects, we use a GradNorm-based algorithm that automatically balances these training objectives. Experiments and analyses on Quora and Twitter datasets demonstrate that our proposed method not only gains a significant increase in diversity but also improves generation quality over several state-of-the-art baselines.

pdf bib
Balanced Joint Adversarial Training for Robust Intent Detection and Slot Filling
Xu Cao | Deyi Xiong | Chongyang Shi | Chao Wang | Yao Meng | Changjian Hu
Proceedings of the 28th International Conference on Computational Linguistics

Joint intent detection and slot filling has recently achieved tremendous success in advancing the performance of utterance understanding. However, many joint models still suffer from the robustness problem, especially on noisy inputs or rare/unseen events. To address this issue, we propose a Joint Adversarial Training (JAT) model to improve the robustness of joint intent detection and slot filling, which consists of two parts: (1) automatically generating joint adversarial examples to attack the joint model, and (2) training the model to defend against the joint adversarial examples so as to robustify the model on small perturbations. As the generated joint adversarial examples have different impacts on the intent detection and slot filling loss, we further propose a Balanced Joint Adversarial Training (BJAT) model that applies a balance factor as a regularization term to the final loss function, which yields a stable training procedure. Extensive experiments and analyses on the lightweight models show that our proposed methods achieve significantly higher scores and substantially improve the robustness of both intent detection and slot filling. In addition, the combination of our BJAT with BERT-large achieves state-of-the-art results on two datasets.

2019

pdf bib
GECOR: An End-to-End Generative Ellipsis and Co-reference Resolution Model for Task-Oriented Dialogue
Jun Quan | Deyi Xiong | Bonnie Webber | Changjian Hu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Ellipsis and co-reference are common and ubiquitous especially in multi-turn dialogues. In this paper, we treat the resolution of ellipsis and co-reference in dialogue as a problem of generating omitted or referred expressions from the dialogue context. We therefore propose a unified end-to-end Generative Ellipsis and CO-reference Resolution model (GECOR) in the context of dialogue. The model can generate a new pragmatically complete user utterance by alternating the generation and copy mode for each user utterance. A multi-task learning framework is further proposed to integrate the GECOR into an end-to-end task-oriented dialogue. In order to train both the GECOR and the multi-task learning framework, we manually construct a new dataset on the basis of the public dataset CamRest676 with both ellipsis and co-reference annotation. On this dataset, intrinsic evaluations on the resolution of ellipsis and co-reference show that the GECOR model significantly outperforms the sequence-to-sequence (seq2seq) baseline model in terms of EM, BLEU and F1 while extrinsic evaluations on the downstream dialogue task demonstrate that our multi-task learning framework with GECOR achieves a higher success rate of task completion than TSCP, a state-of-the-art end-to-end task-oriented dialogue model.

2018

pdf bib
Adaptive Learning of Local Semantic and Global Structure Representations for Text Classification
Jianyu Zhao | Zhiqiang Zhan | Qichuan Yang | Yang Zhang | Changjian Hu | Zhensheng Li | Liuxin Zhang | Zhiqiang He
Proceedings of the 27th International Conference on Computational Linguistics

Representation learning is a key issue for most Natural Language Processing (NLP) tasks. Most existing representation models either learn little structure information or just rely on pre-defined structures, leading to degradation of performance and generalization capability. This paper focuses on learning both local semantic and global structure representations for text classification. In detail, we propose a novel Sandwich Neural Network (SNN) to learn semantic and structure representations automatically without relying on parsers. More importantly, semantic and structure information contribute unequally to the text representation at corpus and instance level. To solve the fusion problem, we propose two strategies: Adaptive Learning Sandwich Neural Network (AL-SNN) and Self-Attention Sandwich Neural Network (SA-SNN). The former learns the weights at corpus level, and the latter further combines attention mechanism to assign the weights at instance level. Experimental results demonstrate that our approach achieves competitive performance on several text classification tasks, including sentiment analysis, question type classification and subjectivity classification. Specifically, the accuracies are MR (82.1%), SST-5 (50.4%), TREC (96%) and SUBJ (93.9%).

2010

pdf bib
Expanding Chinese Sentiment Dictionaries from Large Scale Unlabeled Corpus
Hongzhi Xu | Kai Zhao | Likun Qiu | Changjian Hu
Proceedings of the 24th Pacific Asia Conference on Language, Information and Computation

2009

pdf bib
A Hybrid Model for Sense Guessing of Chinese Unknown Words
Likun Qiu | Kai Zhao | Changjian Hu
Proceedings of the 23rd Pacific Asia Conference on Language, Information and Computation, Volume 2

pdf bib
SESS: A Self-Supervised and Syntax-Based Method for Sentiment Classification
Weishi Zhang | Kai Zhao | Likun Qiu | Changjian Hu
Proceedings of the 23rd Pacific Asia Conference on Language, Information and Computation, Volume 2

pdf bib
Discovery of Dependency Tree Patterns for Relation Extraction
Hongzhi Xu | Changjian Hu | Guoyang Shen
Proceedings of the 23rd Pacific Asia Conference on Language, Information and Computation, Volume 2

2008

pdf bib
A Method for Automatic POS Guessing of Chinese Unknown Words
Likun Qiu | Changjian Hu | Kai Zhao
Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008)