Brian Yan


2021

pdf bib
Highland Puebla Nahuatl Speech Translation Corpus for Endangered Language Documentation
Jiatong Shi | Jonathan D. Amith | Xuankai Chang | Siddharth Dalmia | Brian Yan | Shinji Watanabe
Proceedings of the First Workshop on Natural Language Processing for Indigenous Languages of the Americas

Documentation of endangered languages (ELs) has become increasingly urgent as thousands of languages are on the verge of disappearing by the end of the 21st century. One challenging aspect of documentation is to develop machine learning tools to automate the processing of EL audio via automatic speech recognition (ASR), machine translation (MT), or speech translation (ST). This paper presents an open-access speech translation corpus of Highland Puebla Nahuatl (glottocode high1278), an EL spoken in central Mexico. It then addresses machine learning contributions to endangered language documentation and argues for the importance of speech translation as a key element in the documentation process. In our experiments, we observed that state-of-the-art end-to-end ST models could outperform a cascaded ST (ASR > MT) pipeline when translating endangered language documentation materials.

pdf bib
Searchable Hidden Intermediates for End-to-End Models of Decomposable Sequence Tasks
Siddharth Dalmia | Brian Yan | Vikas Raunak | Florian Metze | Shinji Watanabe
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

End-to-end approaches for sequence tasks are becoming increasingly popular. Yet for complex sequence tasks, like speech translation, systems that cascade several models trained on sub-tasks have shown to be superior, suggesting that the compositionality of cascaded systems simplifies learning and enables sophisticated search capabilities. In this work, we present an end-to-end framework that exploits compositionality to learn searchable hidden representations at intermediate stages of a sequence model using decomposed sub-tasks. These hidden intermediates can be improved using beam search to enhance the overall performance and can also incorporate external models at intermediate stages of the network to re-score or adapt towards out-of-domain data. One instance of the proposed framework is a Multi-Decoder model for speech translation that extracts the searchable hidden intermediates from a speech recognition sub-task. The model demonstrates the aforementioned benefits and outperforms the previous state-of-the-art by around +6 and +3 BLEU on the two test sets of Fisher-CallHome and by around +3 and +4 BLEU on the English-German and English-French test sets of MuST-C.

pdf bib
ESPnet-ST IWSLT 2021 Offline Speech Translation System
Hirofumi Inaguma | Brian Yan | Siddharth Dalmia | Pengcheng Guo | Jiatong Shi | Kevin Duh | Shinji Watanabe
Proceedings of the 18th International Conference on Spoken Language Translation (IWSLT 2021)

This paper describes the ESPnet-ST group’s IWSLT 2021 submission in the offline speech translation track. This year we made various efforts on training data, architecture, and audio segmentation. On the data side, we investigated sequence-level knowledge distillation (SeqKD) for end-to-end (E2E) speech translation. Specifically, we used multi-referenced SeqKD from multiple teachers trained on different amounts of bitext. On the architecture side, we adopted the Conformer encoder and the Multi-Decoder architecture, which equips dedicated decoders for speech recognition and translation tasks in a unified encoder-decoder model and enables search in both source and target language spaces during inference. We also significantly improved audio segmentation by using the pyannote.audio toolkit and merging multiple short segments for long context modeling. Experimental evaluations showed that each of them contributed to large improvements in translation performance. Our best E2E system combined all the above techniques with model ensembling and achieved 31.4 BLEU on the 2-ref of tst2021 and 21.2 BLEU and 19.3 BLEU on the two single references of tst2021.