Bhuwan Dhingra


2021

pdf bib
Investigating the Effect of Background Knowledge on Natural Questions
Vidhisha Balachandran | Bhuwan Dhingra | Haitian Sun | Michael Collins | William Cohen
Proceedings of Deep Learning Inside Out (DeeLIO): The 2nd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures

Existing work shows the benefits of integrating KBs with textual evidence for QA only on questions that are answerable by KBs alone (Sun et al., 2019). In contrast, real world QA systems often have to deal with questions that might not be directly answerable by KBs. Here, we investigate the effect of integrating background knowledge from KBs for the Natural Questions (NQ) task. We create a subset of the NQ data, Factual Questions (FQ), where the questions have evidence in the KB in the form of paths that link question entities to answer entities but still must be answered using text, to facilitate further research into KB integration methods. We propose and analyze a simple, model-agnostic approach for incorporating KB paths into text-based QA systems and establish a strong upper bound on FQ for our method using an oracle retriever. We show that several variants of Personalized PageRank based fact retrievers lead to a low recall of answer entities and consequently fail to improve QA performance. Our results suggest that fact retrieval is a bottleneck for integrating KBs into real world QA datasets

pdf bib
Fool Me Twice: Entailment from Wikipedia Gamification
Julian Eisenschlos | Bhuwan Dhingra | Jannis Bulian | Benjamin Börschinger | Jordan Boyd-Graber
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We release FoolMeTwice (FM2 for short), a large dataset of challenging entailment pairs collected through a fun multi-player game. Gamification encourages adversarial examples, drastically lowering the number of examples that can be solved using “shortcuts” compared to other popular entailment datasets. Players are presented with two tasks. The first task asks the player to write a plausible claim based on the evidence from a Wikipedia page. The second one shows two plausible claims written by other players, one of which is false, and the goal is to identify it before the time runs out. Players “pay” to see clues retrieved from the evidence pool: the more evidence the player needs, the harder the claim. Game-play between motivated players leads to diverse strategies for crafting claims, such as temporal inference and diverting to unrelated evidence, and results in higher quality data for the entailment and evidence retrieval tasks. We open source the dataset and the game code.

pdf bib
Differentiable Open-Ended Commonsense Reasoning
Bill Yuchen Lin | Haitian Sun | Bhuwan Dhingra | Manzil Zaheer | Xiang Ren | William Cohen
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Current commonsense reasoning research focuses on developing models that use commonsense knowledge to answer multiple-choice questions. However, systems designed to answer multiple-choice questions may not be useful in applications that do not provide a small list of candidate answers to choose from. As a step towards making commonsense reasoning research more realistic, we propose to study open-ended commonsense reasoning (OpenCSR) — the task of answering a commonsense question without any pre-defined choices — using as a resource only a corpus of commonsense facts written in natural language. OpenCSR is challenging due to a large decision space, and because many questions require implicit multi-hop reasoning. As an approach to OpenCSR, we propose DrFact, an efficient Differentiable model for multi-hop Reasoning over knowledge Facts. To evaluate OpenCSR methods, we adapt several popular commonsense reasoning benchmarks, and collect multiple new answers for each test question via crowd-sourcing. Experiments show that DrFact outperforms strong baseline methods by a large margin.

2020

pdf bib
ToTTo: A Controlled Table-To-Text Generation Dataset
Ankur Parikh | Xuezhi Wang | Sebastian Gehrmann | Manaal Faruqui | Bhuwan Dhingra | Diyi Yang | Dipanjan Das
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

We present ToTTo, an open-domain English table-to-text dataset with over 120,000 training examples that proposes a controlled generation task: given a Wikipedia table and a set of highlighted table cells, produce a one-sentence description. To obtain generated targets that are natural but also faithful to the source table, we introduce a dataset construction process where annotators directly revise existing candidate sentences from Wikipedia. We present systematic analyses of our dataset and annotation process as well as results achieved by several state-of-the-art baselines. While usually fluent, existing methods often hallucinate phrases that are not supported by the table, suggesting that this dataset can serve as a useful research benchmark for high-precision conditional text generation.

pdf bib
Weakly- and Semi-supervised Evidence Extraction
Danish Pruthi | Bhuwan Dhingra | Graham Neubig | Zachary C. Lipton
Findings of the Association for Computational Linguistics: EMNLP 2020

For many prediction tasks, stakeholders desire not only predictions but also supporting evidence that a human can use to verify its correctness. However, in practice, evidence annotations may only be available for a minority of training examples (if available at all). In this paper, we propose new methods to combine few evidence annotations (strong semi-supervision) with abundant document-level labels (weak supervision) for the task of evidence extraction. Evaluating on two classification tasks that feature evidence annotations, we find that our methods outperform baselines adapted from the interpretability literature to our task. Our approach yields gains with as few as hundred evidence annotations.

pdf bib
Learning to Deceive with Attention-Based Explanations
Danish Pruthi | Mansi Gupta | Bhuwan Dhingra | Graham Neubig | Zachary C. Lipton
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Attention mechanisms are ubiquitous components in neural architectures applied to natural language processing. In addition to yielding gains in predictive accuracy, attention weights are often claimed to confer interpretability, purportedly useful both for providing insights to practitioners and for explaining why a model makes its decisions to stakeholders. We call the latter use of attention mechanisms into question by demonstrating a simple method for training models to produce deceptive attention masks. Our method diminishes the total weight assigned to designated impermissible tokens, even when the models can be shown to nevertheless rely on these features to drive predictions. Across multiple models and tasks, our approach manipulates attention weights while paying surprisingly little cost in accuracy. Through a human study, we show that our manipulated attention-based explanations deceive people into thinking that predictions from a model biased against gender minorities do not rely on the gender. Consequently, our results cast doubt on attention’s reliability as a tool for auditing algorithms in the context of fairness and accountability.

2019

pdf bib
Handling Divergent Reference Texts when Evaluating Table-to-Text Generation
Bhuwan Dhingra | Manaal Faruqui | Ankur Parikh | Ming-Wei Chang | Dipanjan Das | William Cohen
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Automatically constructed datasets for generating text from semi-structured data (tables), such as WikiBio, often contain reference texts that diverge from the information in the corresponding semi-structured data. We show that metrics which rely solely on the reference texts, such as BLEU and ROUGE, show poor correlation with human judgments when those references diverge. We propose a new metric, PARENT, which aligns n-grams from the reference and generated texts to the semi-structured data before computing their precision and recall. Through a large scale human evaluation study of table-to-text models for WikiBio, we show that PARENT correlates with human judgments better than existing text generation metrics. We also adapt and evaluate the information extraction based evaluation proposed by Wiseman et al (2017), and show that PARENT has comparable correlation to it, while being easier to use. We show that PARENT is also applicable when the reference texts are elicited from humans using the data from the WebNLG challenge.

pdf bib
Combating Adversarial Misspellings with Robust Word Recognition
Danish Pruthi | Bhuwan Dhingra | Zachary C. Lipton
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

To combat adversarial spelling mistakes, we propose placing a word recognition model in front of the downstream classifier. Our word recognition models build upon the RNN semi-character architecture, introducing several new backoff strategies for handling rare and unseen words. Trained to recognize words corrupted by random adds, drops, swaps, and keyboard mistakes, our method achieves 32% relative (and 3.3% absolute) error reduction over the vanilla semi-character model. Notably, our pipeline confers robustness on the downstream classifier, outperforming both adversarial training and off-the-shelf spell checkers. Against a BERT model fine-tuned for sentiment analysis, a single adversarially-chosen character attack lowers accuracy from 90.3% to 45.8%. Our defense restores accuracy to 75%. Surprisingly, better word recognition does not always entail greater robustness. Our analysis reveals that robustness also depends upon a quantity that we denote the sensitivity.

pdf bib
Probing Biomedical Embeddings from Language Models
Qiao Jin | Bhuwan Dhingra | William Cohen | Xinghua Lu
Proceedings of the 3rd Workshop on Evaluating Vector Space Representations for NLP

Contextualized word embeddings derived from pre-trained language models (LMs) show significant improvements on downstream NLP tasks. Pre-training on domain-specific corpora, such as biomedical articles, further improves their performance. In this paper, we conduct probing experiments to determine what additional information is carried intrinsically by the in-domain trained contextualized embeddings. For this we use the pre-trained LMs as fixed feature extractors and restrict the downstream task models to not have additional sequence modeling layers. We compare BERT (Devlin et al. 2018), ELMo (Peters et al., 2018), BioBERT (Lee et al., 2019) and BioELMo, a biomedical version of ELMo trained on 10M PubMed abstracts. Surprisingly, while fine-tuned BioBERT is better than BioELMo in biomedical NER and NLI tasks, as a fixed feature extractor BioELMo outperforms BioBERT in our probing tasks. We use visualization and nearest neighbor analysis to show that better encoding of entity-type and relational information leads to this superiority.

pdf bib
Text Generation with Exemplar-based Adaptive Decoding
Hao Peng | Ankur Parikh | Manaal Faruqui | Bhuwan Dhingra | Dipanjan Das
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

We propose a novel conditioned text generation model. It draws inspiration from traditional template-based text generation techniques, where the source provides the content (i.e., what to say), and the template influences how to say it. Building on the successful encoder-decoder paradigm, it first encodes the content representation from the given input text; to produce the output, it retrieves exemplar text from the training data as “soft templates,” which are then used to construct an exemplar-specific decoder. We evaluate the proposed model on abstractive text summarization and data-to-text generation. Empirical results show that this model achieves strong performance and outperforms comparable baselines.

pdf bib
PubMedQA: A Dataset for Biomedical Research Question Answering
Qiao Jin | Bhuwan Dhingra | Zhengping Liu | William Cohen | Xinghua Lu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

We introduce PubMedQA, a novel biomedical question answering (QA) dataset collected from PubMed abstracts. The task of PubMedQA is to answer research questions with yes/no/maybe (e.g.: Do preoperative statins reduce atrial fibrillation after coronary artery bypass grafting?) using the corresponding abstracts. PubMedQA has 1k expert-annotated, 61.2k unlabeled and 211.3k artificially generated QA instances. Each PubMedQA instance is composed of (1) a question which is either an existing research article title or derived from one, (2) a context which is the corresponding abstract without its conclusion, (3) a long answer, which is the conclusion of the abstract and, presumably, answers the research question, and (4) a yes/no/maybe answer which summarizes the conclusion. PubMedQA is the first QA dataset where reasoning over biomedical research texts, especially their quantitative contents, is required to answer the questions. Our best performing model, multi-phase fine-tuning of BioBERT with long answer bag-of-word statistics as additional supervision, achieves 68.1% accuracy, compared to single human performance of 78.0% accuracy and majority-baseline of 55.2% accuracy, leaving much room for improvement. PubMedQA is publicly available at https://pubmedqa.github.io.

2018

pdf bib
Open Domain Question Answering Using Early Fusion of Knowledge Bases and Text
Haitian Sun | Bhuwan Dhingra | Manzil Zaheer | Kathryn Mazaitis | Ruslan Salakhutdinov | William Cohen
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Open Domain Question Answering (QA) is evolving from complex pipelined systems to end-to-end deep neural networks. Specialized neural models have been developed for extracting answers from either text alone or Knowledge Bases (KBs) alone. In this paper we look at a more practical setting, namely QA over the combination of a KB and entity-linked text, which is appropriate when an incomplete KB is available with a large text corpus. Building on recent advances in graph representation learning we propose a novel model, GRAFT-Net, for extracting answers from a question-specific subgraph containing text and KB entities and relations. We construct a suite of benchmark tasks for this problem, varying the difficulty of questions, the amount of training data, and KB completeness. We show that GRAFT-Net is competitive with the state-of-the-art when tested using either KBs or text alone, and vastly outperforms existing methods in the combined setting.

pdf bib
Neural Models for Reasoning over Multiple Mentions Using Coreference
Bhuwan Dhingra | Qiao Jin | Zhilin Yang | William Cohen | Ruslan Salakhutdinov
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)

Many problems in NLP require aggregating information from multiple mentions of the same entity which may be far apart in the text. Existing Recurrent Neural Network (RNN) layers are biased towards short-term dependencies and hence not suited to such tasks. We present a recurrent layer which is instead biased towards coreferent dependencies. The layer uses coreference annotations extracted from an external system to connect entity mentions belonging to the same cluster. Incorporating this layer into a state-of-the-art reading comprehension model improves performance on three datasets – Wikihop, LAMBADA and the bAbi AI tasks – with large gains when training data is scarce.

pdf bib
Simple and Effective Semi-Supervised Question Answering
Bhuwan Dhingra | Danish Danish | Dheeraj Rajagopal
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)

Recent success of deep learning models for the task of extractive Question Answering (QA) is hinged on the availability of large annotated corpora. However, large domain specific annotated corpora are limited and expensive to construct. In this work, we envision a system where the end user specifies a set of base documents and only a few labelled examples. Our system exploits the document structure to create cloze-style questions from these base documents; pre-trains a powerful neural network on the cloze style questions; and further fine-tunes the model on the labeled examples. We evaluate our proposed system across three diverse datasets from different domains, and find it to be highly effective with very little labeled data. We attain more than 50% F1 score on SQuAD and TriviaQA with less than a thousand labelled examples. We are also releasing a set of 3.2M cloze-style questions for practitioners to use while building QA systems.

pdf bib
Embedding Text in Hyperbolic Spaces
Bhuwan Dhingra | Christopher Shallue | Mohammad Norouzi | Andrew Dai | George Dahl
Proceedings of the Twelfth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-12)

Natural language text exhibits hierarchical structure in a variety of respects. Ideally, we could incorporate our prior knowledge of this hierarchical structure into unsupervised learning algorithms that work on text data. Recent work by Nickel and Kiela (2017) proposed using hyperbolic instead of Euclidean embedding spaces to represent hierarchical data and demonstrated encouraging results when embedding graphs. In this work, we extend their method with a re-parameterization technique that allows us to learn hyperbolic embeddings of arbitrarily parameterized objects. We apply this framework to learn word and sentence embeddings in hyperbolic space in an unsupervised manner from text corpora. The resulting embeddings seem to encode certain intuitive notions of hierarchy, such as word-context frequency and phrase constituency. However, the implicit continuous hierarchy in the learned hyperbolic space makes interrogating the model’s learned hierarchies more difficult than for models that learn explicit edges between items. The learned hyperbolic embeddings show improvements over Euclidean embeddings in some – but not all – downstream tasks, suggesting that hierarchical organization is more useful for some tasks than others.

pdf bib
AttentionMeSH: Simple, Effective and Interpretable Automatic MeSH Indexer
Qiao Jin | Bhuwan Dhingra | William Cohen | Xinghua Lu
Proceedings of the 6th BioASQ Workshop A challenge on large-scale biomedical semantic indexing and question answering

There are millions of articles in PubMed database. To facilitate information retrieval, curators in the National Library of Medicine (NLM) assign a set of Medical Subject Headings (MeSH) to each article. MeSH is a hierarchically-organized vocabulary, containing about 28K different concepts, covering the fields from clinical medicine to information sciences. Several automatic MeSH indexing models have been developed to improve the time-consuming and financially expensive manual annotation, including the NLM official tool – Medical Text Indexer, and the winner of BioASQ Task5a challenge – DeepMeSH. However, these models are complex and not interpretable. We propose a novel end-to-end model, AttentionMeSH, which utilizes deep learning and attention mechanism to index MeSH terms to biomedical text. The attention mechanism enables the model to associate textual evidence with annotations, thus providing interpretability at the word level. The model also uses a novel masking mechanism to enhance accuracy and speed. In the final week of BioASQ Chanllenge Task6a, we ranked 2nd by average MiF using an on-construction model. After the contest, we achieve close to state-of-the-art MiF performance of ∼ 0.684 using our final model. Human evaluations show AttentionMeSH also provides high level of interpretability, retrieving about 90% of all expert-labeled relevant words given an MeSH-article pair at 20 output.

2017

pdf bib
Towards End-to-End Reinforcement Learning of Dialogue Agents for Information Access
Bhuwan Dhingra | Lihong Li | Xiujun Li | Jianfeng Gao | Yun-Nung Chen | Faisal Ahmed | Li Deng
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

This paper proposes KB-InfoBot - a multi-turn dialogue agent which helps users search Knowledge Bases (KBs) without composing complicated queries. Such goal-oriented dialogue agents typically need to interact with an external database to access real-world knowledge. Previous systems achieved this by issuing a symbolic query to the KB to retrieve entries based on their attributes. However, such symbolic operations break the differentiability of the system and prevent end-to-end training of neural dialogue agents. In this paper, we address this limitation by replacing symbolic queries with an induced “soft” posterior distribution over the KB that indicates which entities the user is interested in. Integrating the soft retrieval process with a reinforcement learner leads to higher task success rate and reward in both simulations and against real users. We also present a fully neural end-to-end agent, trained entirely from user feedback, and discuss its application towards personalized dialogue agents.

pdf bib
Gated-Attention Readers for Text Comprehension
Bhuwan Dhingra | Hanxiao Liu | Zhilin Yang | William Cohen | Ruslan Salakhutdinov
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In this paper we study the problem of answering cloze-style questions over documents. Our model, the Gated-Attention (GA) Reader, integrates a multi-hop architecture with a novel attention mechanism, which is based on multiplicative interactions between the query embedding and the intermediate states of a recurrent neural network document reader. This enables the reader to build query-specific representations of tokens in the document for accurate answer selection. The GA Reader obtains state-of-the-art results on three benchmarks for this task–the CNN & Daily Mail news stories and the Who Did What dataset. The effectiveness of multiplicative interaction is demonstrated by an ablation study, and by comparing to alternative compositional operators for implementing the gated-attention.

2016

pdf bib
Using Graphs of Classifiers to Impose Constraints on Semi-supervised Relation Extraction
Lidong Bing | William Cohen | Bhuwan Dhingra | Richard Wang
Proceedings of the 5th Workshop on Automated Knowledge Base Construction

pdf bib
Tweet2Vec: Character-Based Distributed Representations for Social Media
Bhuwan Dhingra | Zhong Zhou | Dylan Fitzpatrick | Michael Muehl | William Cohen
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)