Bhushan Kotnis


2020

pdf bib
On Aligning OpenIE Extractions with Knowledge Bases: A Case Study
Kiril Gashteovski | Rainer Gemulla | Bhushan Kotnis | Sven Hertling | Christian Meilicke
Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems

Open information extraction (OIE) is the task of extracting relations and their corresponding arguments from a natural language text in un- supervised manner. Outputs of such systems are used for downstream tasks such as ques- tion answering and automatic knowledge base (KB) construction. Many of these downstream tasks rely on aligning OIE triples with refer- ence KBs. Such alignments are usually eval- uated w.r.t. a specific downstream task and, to date, no direct manual evaluation of such alignments has been performed. In this paper, we directly evaluate how OIE triples from the OPIEC corpus are related to the DBpedia KB w.r.t. information content. First, we investigate OPIEC triples and DBpedia facts having the same arguments by comparing the information on the OIE surface relation with the KB rela- tion. Second, we evaluate the expressibility of general OPIEC triples in DBpedia. We in- vestigate whether—and, if so, how—a given OIE triple can be mapped to a single KB fact. We found that such mappings are not always possible because the information in the OIE triples tends to be more specific. Our evalua- tion suggests, however, that significant part of OIE triples can be expressed by means of KB formulas instead of individual facts.

2019

pdf bib
Abstract Graphs and Abstract Paths for Knowledge Graph Completion
Vivi Nastase | Bhushan Kotnis
Proceedings of the Eighth Joint Conference on Lexical and Computational Semantics (*SEM 2019)

Knowledge graphs, which provide numerous facts in a machine-friendly format, are incomplete. Information that we induce from such graphs – e.g. entity embeddings, relation representations or patterns – will be affected by the imbalance in the information captured in the graph – by biasing representations, or causing us to miss potential patterns. To partially compensate for this situation we describe a method for representing knowledge graphs that capture an intensional representation of the original extensional information. This representation is very compact, and it abstracts away from individual links, allowing us to find better path candidates, as shown by the results of link prediction using this information.

pdf bib
Attending to Future Tokens for Bidirectional Sequence Generation
Carolin Lawrence | Bhushan Kotnis | Mathias Niepert
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Neural sequence generation is typically performed token-by-token and left-to-right. Whenever a token is generated only previously produced tokens are taken into consideration. In contrast, for problems such as sequence classification, bidirectional attention, which takes both past and future tokens into consideration, has been shown to perform much better. We propose to make the sequence generation process bidirectional by employing special placeholder tokens. Treated as a node in a fully connected graph, a placeholder token can take past and future tokens into consideration when generating the actual output token. We verify the effectiveness of our approach experimentally on two conversational tasks where the proposed bidirectional model outperforms competitive baselines by a large margin.

2015

pdf bib
Knowledge Base Inference using Bridging Entities
Bhushan Kotnis | Pradeep Bansal | Partha P. Talukdar
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing