Audrey Laroche


2012

pdf bib
Analyse des contextes et des candidats dans l’identification des équivalents terminologiques en corpus comparables (Analysis of contexts and candidates in term-translation spotting in comparable corpora) [in French]
Audrey Laroche
Proceedings of the Joint Conference JEP-TALN-RECITAL 2012, volume 2: TALN

2010

pdf bib
Revisiting Context-based Projection Methods for Term-Translation Spotting in Comparable Corpora
Audrey Laroche | Philippe Langlais
Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010)

pdf bib
Attribution d’auteur au moyen de modèles de langue et de modèles stylométriques
Audrey Laroche
Actes de la 17e conférence sur le Traitement Automatique des Langues Naturelles. REncontres jeunes Chercheurs en Informatique pour le Traitement Automatique des Langues

Dans une tâche consistant à trouver l’auteur (parmi 53) de chacun de 114 textes, nous analysons la performance de modèles de langue et de modèles stylométriques sous les angles du rappel et du nombre de paramètres. Le modèle de mots bigramme à lissage de Kneser-Ney modifié interpolé est le plus performant (75 % de bonnes réponses au premier rang). Parmi les modèles stylométriques, une combinaison de 7 paramètres liés aux parties du discours produit les meilleurs résultats (rappel de 25 % au premier rang). Dans les deux catégories de modèles, le rappel maximal n’est pas atteint lorsque le nombre de paramètres est le plus élevé.