Atticus Geiger


2021

pdf bib
Dynabench: Rethinking Benchmarking in NLP
Douwe Kiela | Max Bartolo | Yixin Nie | Divyansh Kaushik | Atticus Geiger | Zhengxuan Wu | Bertie Vidgen | Grusha Prasad | Amanpreet Singh | Pratik Ringshia | Zhiyi Ma | Tristan Thrush | Sebastian Riedel | Zeerak Waseem | Pontus Stenetorp | Robin Jia | Mohit Bansal | Christopher Potts | Adina Williams
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We introduce Dynabench, an open-source platform for dynamic dataset creation and model benchmarking. Dynabench runs in a web browser and supports human-and-model-in-the-loop dataset creation: annotators seek to create examples that a target model will misclassify, but that another person will not. In this paper, we argue that Dynabench addresses a critical need in our community: contemporary models quickly achieve outstanding performance on benchmark tasks but nonetheless fail on simple challenge examples and falter in real-world scenarios. With Dynabench, dataset creation, model development, and model assessment can directly inform each other, leading to more robust and informative benchmarks. We report on four initial NLP tasks, illustrating these concepts and highlighting the promise of the platform, and address potential objections to dynamic benchmarking as a new standard for the field.

pdf bib
DynaSent: A Dynamic Benchmark for Sentiment Analysis
Christopher Potts | Zhengxuan Wu | Atticus Geiger | Douwe Kiela
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

We introduce DynaSent (‘Dynamic Sentiment’), a new English-language benchmark task for ternary (positive/negative/neutral) sentiment analysis. DynaSent combines naturally occurring sentences with sentences created using the open-source Dynabench Platform, which facilities human-and-model-in-the-loop dataset creation. DynaSent has a total of 121,634 sentences, each validated by five crowdworkers, and its development and test splits are designed to produce chance performance for even the best models we have been able to develop; when future models solve this task, we will use them to create DynaSent version 2, continuing the dynamic evolution of this benchmark. Here, we report on the dataset creation effort, focusing on the steps we took to increase quality and reduce artifacts. We also present evidence that DynaSent’s Neutral category is more coherent than the comparable category in other benchmarks, and we motivate training models from scratch for each round over successive fine-tuning.

2020

pdf bib
Neural Natural Language Inference Models Partially Embed Theories of Lexical Entailment and Negation
Atticus Geiger | Kyle Richardson | Christopher Potts
Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP

We address whether neural models for Natural Language Inference (NLI) can learn the compositional interactions between lexical entailment and negation, using four methods: the behavioral evaluation methods of (1) challenge test sets and (2) systematic generalization tasks, and the structural evaluation methods of (3) probes and (4) interventions. To facilitate this holistic evaluation, we present Monotonicity NLI (MoNLI), a new naturalistic dataset focused on lexical entailment and negation. In our behavioral evaluations, we find that models trained on general-purpose NLI datasets fail systematically on MoNLI examples containing negation, but that MoNLI fine-tuning addresses this failure. In our structural evaluations, we look for evidence that our top-performing BERT-based model has learned to implement the monotonicity algorithm behind MoNLI. Probes yield evidence consistent with this conclusion, and our intervention experiments bolster this, showing that the causal dynamics of the model mirror the causal dynamics of this algorithm on subsets of MoNLI. This suggests that the BERT model at least partially embeds a theory of lexical entailment and negation at an algorithmic level.

2019

pdf bib
Recursive Routing Networks: Learning to Compose Modules for Language Understanding
Ignacio Cases | Clemens Rosenbaum | Matthew Riemer | Atticus Geiger | Tim Klinger | Alex Tamkin | Olivia Li | Sandhini Agarwal | Joshua D. Greene | Dan Jurafsky | Christopher Potts | Lauri Karttunen
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

We introduce Recursive Routing Networks (RRNs), which are modular, adaptable models that learn effectively in diverse environments. RRNs consist of a set of functions, typically organized into a grid, and a meta-learner decision-making component called the router. The model jointly optimizes the parameters of the functions and the meta-learner’s policy for routing inputs through those functions. RRNs can be incorporated into existing architectures in a number of ways; we explore adding them to word representation layers, recurrent network hidden layers, and classifier layers. Our evaluation task is natural language inference (NLI). Using the MultiNLI corpus, we show that an RRN’s routing decisions reflect the high-level genre structure of that corpus. To show that RRNs can learn to specialize to more fine-grained semantic distinctions, we introduce a new corpus of NLI examples involving implicative predicates, and show that the model components become fine-tuned to the inferential signatures that are characteristic of these predicates.

pdf bib
Posing Fair Generalization Tasks for Natural Language Inference
Atticus Geiger | Ignacio Cases | Lauri Karttunen | Christopher Potts
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Deep learning models for semantics are generally evaluated using naturalistic corpora. Adversarial testing methods, in which models are evaluated on new examples with known semantic properties, have begun to reveal that good performance at these naturalistic tasks can hide serious shortcomings. However, we should insist that these evaluations be fair – that the models are given data sufficient to support the requisite kinds of generalization. In this paper, we define and motivate a formal notion of fairness in this sense. We then apply these ideas to natural language inference by constructing very challenging but provably fair artificial datasets and showing that standard neural models fail to generalize in the required ways; only task-specific models that jointly compose the premise and hypothesis are able to achieve high performance, and even these models do not solve the task perfectly.