Ashutosh Baheti


2021

pdf bib
Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts
Ashutosh Baheti | Maarten Sap | Alan Ritter | Mark Riedl
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Dialogue models trained on human conversations inadvertently learn to generate toxic responses. In addition to producing explicitly offensive utterances, these models can also implicitly insult a group or individual by aligning themselves with an offensive statement. To better understand the dynamics of contextually offensive language, we investigate the stance of dialogue model responses in offensive Reddit conversations. Specifically, we create ToxiChat, a crowd-annotated dataset of 2,000 Reddit threads and model responses labeled with offensive language and stance. Our analysis reveals that 42% of human responses agree with toxic comments, whereas only 13% agree with safe comments. This undesirable behavior is learned by neural dialogue models, such as DialoGPT, which we show are two times more likely to agree with offensive comments. To enable automatic detection of offensive language, we fine-tuned transformer-based classifiers on ToxiChat that achieve 0.71 F1 for offensive labels and 0.53 Macro-F1 for stance labels. Finally, we quantify the effectiveness of controllable text generation (CTG) methods to mitigate the tendency of neural dialogue models to agree with offensive comments. Compared to the baseline, our best CTG model achieves a 19% reduction in agreement with offensive comments and produces 29% fewer offensive replies. Our work highlights the need for further efforts to characterize and analyze inappropriate behavior in dialogue models, in order to help make them safer.

2020

pdf bib
Fluent Response Generation for Conversational Question Answering
Ashutosh Baheti | Alan Ritter | Kevin Small
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Question answering (QA) is an important aspect of open-domain conversational agents, garnering specific research focus in the conversational QA (ConvQA) subtask. One notable limitation of recent ConvQA efforts is the response being answer span extraction from the target corpus, thus ignoring the natural language generation (NLG) aspect of high-quality conversational agents. In this work, we propose a method for situating QA responses within a SEQ2SEQ NLG approach to generate fluent grammatical answer responses while maintaining correctness. From a technical perspective, we use data augmentation to generate training data for an end-to-end system. Specifically, we develop Syntactic Transformations (STs) to produce question-specific candidate answer responses and rank them using a BERT-based classifier (Devlin et al., 2019). Human evaluation on SQuAD 2.0 data (Rajpurkar et al., 2018) demonstrate that the proposed model outperforms baseline CoQA and QuAC models in generating conversational responses. We further show our model’s scalability by conducting tests on the CoQA dataset. The code and data are available at https://github.com/abaheti95/QADialogSystem.

2018

pdf bib
Generating More Interesting Responses in Neural Conversation Models with Distributional Constraints
Ashutosh Baheti | Alan Ritter | Jiwei Li | Bill Dolan
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Neural conversation models tend to generate safe, generic responses for most inputs. This is due to the limitations of likelihood-based decoding objectives in generation tasks with diverse outputs, such as conversation. To address this challenge, we propose a simple yet effective approach for incorporating side information in the form of distributional constraints over the generated responses. We propose two constraints that help generate more content rich responses that are based on a model of syntax and topics (Griffiths et al., 2005) and semantic similarity (Arora et al., 2016). We evaluate our approach against a variety of competitive baselines, using both automatic metrics and human judgments, showing that our proposed approach generates responses that are much less generic without sacrificing plausibility. A working demo of our code can be found at https://github.com/abaheti95/DC-NeuralConversation.

2017

pdf bib
Curriculum Design for Code-switching: Experiments with Language Identification and Language Modeling with Deep Neural Networks
Monojit Choudhury | Kalika Bali | Sunayana Sitaram | Ashutosh Baheti
Proceedings of the 14th International Conference on Natural Language Processing (ICON-2017)