Arturo Oncevay

Also published as: Arturo Oncevay-Marcos


2021

pdf bib
Proceedings of the First Workshop on Natural Language Processing for Indigenous Languages of the Americas
Manuel Mager | Arturo Oncevay | Annette Rios | Ivan Vladimir Meza Ruiz | Alexis Palmer | Graham Neubig | Katharina Kann
Proceedings of the First Workshop on Natural Language Processing for Indigenous Languages of the Americas

pdf bib
Representation of Yine [Arawak] Morphology by Finite State Transducer Formalism
Adriano Ingunza Torres | John Miller | Arturo Oncevay | Roberto Zariquiey Biondi
Proceedings of the First Workshop on Natural Language Processing for Indigenous Languages of the Americas

We represent the complexity of Yine (Arawak) morphology with a finite state transducer (FST) based morphological analyzer. Yine is a low-resource indigenous polysynthetic Peruvian language spoken by approximately 3,000 people and is classified as ‘definitely endangered’ by UNESCO. We review Yine morphology focusing on morphophonology, possessive constructions and verbal predicates. Then we develop FSTs to model these components proposing techniques to solve challenging problems such as complex patterns of incorporating open and closed category arguments. This is a work in progress and we still have more to do in the development and verification of our analyzer. Our analyzer will serve both as a tool to better document the Yine language and as a component of natural language processing (NLP) applications such as spell checking and correction.

pdf bib
Peru is Multilingual, Its Machine Translation Should Be Too?
Arturo Oncevay
Proceedings of the First Workshop on Natural Language Processing for Indigenous Languages of the Americas

Peru is a multilingual country with a long history of contact between the indigenous languages and Spanish. Taking advantage of this context for machine translation is possible with multilingual approaches for learning both unsupervised subword segmentation and neural machine translation models. The study proposes the first multilingual translation models for four languages spoken in Peru: Aymara, Ashaninka, Quechua and Shipibo-Konibo, providing both many-to-Spanish and Spanish-to-many models and outperforming pairwise baselines in most of them. The task exploited a large English-Spanish dataset for pre-training, monolingual texts with tagged back-translation, and parallel corpora aligned with English. Finally, by fine-tuning the best models, we also assessed the out-of-domain capabilities in two evaluation datasets for Quechua and a new one for Shipibo-Konibo.

pdf bib
Findings of the AmericasNLP 2021 Shared Task on Open Machine Translation for Indigenous Languages of the Americas
Manuel Mager | Arturo Oncevay | Abteen Ebrahimi | John Ortega | Annette Rios | Angela Fan | Ximena Gutierrez-Vasques | Luis Chiruzzo | Gustavo Giménez-Lugo | Ricardo Ramos | Ivan Vladimir Meza Ruiz | Rolando Coto-Solano | Alexis Palmer | Elisabeth Mager-Hois | Vishrav Chaudhary | Graham Neubig | Ngoc Thang Vu | Katharina Kann
Proceedings of the First Workshop on Natural Language Processing for Indigenous Languages of the Americas

This paper presents the results of the 2021 Shared Task on Open Machine Translation for Indigenous Languages of the Americas. The shared task featured two independent tracks, and participants submitted machine translation systems for up to 10 indigenous languages. Overall, 8 teams participated with a total of 214 submissions. We provided training sets consisting of data collected from various sources, as well as manually translated sentences for the development and test sets. An official baseline trained on this data was also provided. Team submissions featured a variety of architectures, including both statistical and neural models, and for the majority of languages, many teams were able to considerably improve over the baseline. The best performing systems achieved 12.97 ChrF higher than baseline, when averaged across languages.

pdf bib
SIGMORPHON 2021 Shared Task on Morphological Reinflection: Generalization Across Languages
Tiago Pimentel | Maria Ryskina | Sabrina J. Mielke | Shijie Wu | Eleanor Chodroff | Brian Leonard | Garrett Nicolai | Yustinus Ghanggo Ate | Salam Khalifa | Nizar Habash | Charbel El-Khaissi | Omer Goldman | Michael Gasser | William Lane | Matt Coler | Arturo Oncevay | Jaime Rafael Montoya Samame | Gema Celeste Silva Villegas | Adam Ek | Jean-Philippe Bernardy | Andrey Shcherbakov | Aziyana Bayyr-ool | Karina Sheifer | Sofya Ganieva | Matvey Plugaryov | Elena Klyachko | Ali Salehi | Andrew Krizhanovsky | Natalia Krizhanovsky | Clara Vania | Sardana Ivanova | Aelita Salchak | Christopher Straughn | Zoey Liu | Jonathan North Washington | Duygu Ataman | Witold Kieraś | Marcin Woliński | Totok Suhardijanto | Niklas Stoehr | Zahroh Nuriah | Shyam Ratan | Francis M. Tyers | Edoardo M. Ponti | Grant Aiton | Richard J. Hatcher | Emily Prud'hommeaux | Ritesh Kumar | Mans Hulden | Botond Barta | Dorina Lakatos | Gábor Szolnok | Judit Ács | Mohit Raj | David Yarowsky | Ryan Cotterell | Ben Ambridge | Ekaterina Vylomova
Proceedings of the 18th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

This year's iteration of the SIGMORPHON Shared Task on morphological reinflection focuses on typological diversity and cross-lingual variation of morphosyntactic features. In terms of the task, we enrich UniMorph with new data for 32 languages from 13 language families, with most of them being under-resourced: Kunwinjku, Classical Syriac, Arabic (Modern Standard, Egyptian, Gulf), Hebrew, Amharic, Aymara, Magahi, Braj, Kurdish (Central, Northern, Southern), Polish, Karelian, Livvi, Ludic, Veps, Võro, Evenki, Xibe, Tuvan, Sakha, Turkish, Indonesian, Kodi, Seneca, Asháninka, Yanesha, Chukchi, Itelmen, Eibela. We evaluate six systems on the new data and conduct an extensive error analysis of the systems' predictions. Transformer-based models generally demonstrate superior performance on the majority of languages, achieving >90% accuracy on 65% of them. The languages on which systems yielded low accuracy are mainly under-resourced, with a limited amount of data. Most errors made by the systems are due to allomorphy, honorificity, and form variation. In addition, we observe that systems especially struggle to inflect multiword lemmas. The systems also produce misspelled forms or end up in repetitive loops (e.g., RNN-based models). Finally, we report a large drop in systems' performance on previously unseen lemmas.

2020

pdf bib
Bridging Linguistic Typology and Multilingual Machine Translation with Multi-View Language Representations
Arturo Oncevay | Barry Haddow | Alexandra Birch
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Sparse language vectors from linguistic typology databases and learned embeddings from tasks like multilingual machine translation have been investigated in isolation, without analysing how they could benefit from each other’s language characterisation. We propose to fuse both views using singular vector canonical correlation analysis and study what kind of information is induced from each source. By inferring typological features and language phylogenies, we observe that our representations embed typology and strengthen correlations with language relationships. We then take advantage of our multi-view language vector space for multilingual machine translation, where we achieve competitive overall translation accuracy in tasks that require information about language similarities, such as language clustering and ranking candidates for multilingual transfer. With our method, we can easily project and assess new languages without expensive retraining of massive multilingual or ranking models, which are major disadvantages of related approaches.

pdf bib
The University of Edinburgh’s English-Tamil and English-Inuktitut Submissions to the WMT20 News Translation Task
Rachel Bawden | Alexandra Birch | Radina Dobreva | Arturo Oncevay | Antonio Valerio Miceli Barone | Philip Williams
Proceedings of the Fifth Conference on Machine Translation

We describe the University of Edinburgh’s submissions to the WMT20 news translation shared task for the low resource language pair English-Tamil and the mid-resource language pair English-Inuktitut. We use the neural machine translation transformer architecture for all submissions and explore a variety of techniques to improve translation quality to compensate for the lack of parallel training data. For the very low-resource English-Tamil, this involves exploring pretraining, using both language model objectives and translation using an unrelated high-resource language pair (German-English), and iterative backtranslation. For English-Inuktitut, we explore the use of multilingual systems, which, despite not being part of the primary submission, would have achieved the best results on the test set.

pdf bib
No Data to Crawl? Monolingual Corpus Creation from PDF Files of Truly low-Resource Languages in Peru
Gina Bustamante | Arturo Oncevay | Roberto Zariquiey
Proceedings of the 12th Language Resources and Evaluation Conference

We introduce new monolingual corpora for four indigenous and endangered languages from Peru: Shipibo-konibo, Ashaninka, Yanesha and Yine. Given the total absence of these languages in the web, the extraction and processing of texts from PDF files is relevant in a truly low-resource language scenario. Our procedure for monolingual corpus creation considers language-specific and language-agnostic steps, and focuses on educational PDF files with multilingual sentences, noisy pages and low-structured content. Through an evaluation based on language modelling and character-level perplexity on a subset of manually extracted sentences, we determine that our method allows the creation of clean corpora for the four languages, a key resource for natural language processing tasks nowadays.

pdf bib
Efficient Strategies for Hierarchical Text Classification: External Knowledge and Auxiliary Tasks
Kervy Rivas Rojas | Gina Bustamante | Arturo Oncevay | Marco Antonio Sobrevilla Cabezudo
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

In hierarchical text classification, we perform a sequence of inference steps to predict the category of a document from top to bottom of a given class taxonomy. Most of the studies have focused on developing novels neural network architectures to deal with the hierarchical structure, but we prefer to look for efficient ways to strengthen a baseline model. We first define the task as a sequence-to-sequence problem. Afterwards, we propose an auxiliary synthetic task of bottom-up-classification. Then, from external dictionaries, we retrieve textual definitions for the classes of all the hierarchy’s layers, and map them into the word vector space. We use the class-definition embeddings as an additional input to condition the prediction of the next layer and in an adapted beam search. Whereas the modified search did not provide large gains, the combination of the auxiliary task and the additional input of class-definitions significantly enhance the classification accuracy. With our efficient approaches, we outperform previous studies, using a drastically reduced number of parameters, in two well-known English datasets.

2019

bib
CSI Peru News: finding the culprit, victim and location in news articles
Gina Bustamante | Arturo Oncevay
Proceedings of the 2019 Workshop on Widening NLP

We introduce a shift on the DS method over the domain of crime-related news from Peru, attempting to find the culprit, victim and location of a crime description from a RE perspective. Obtained results are highly promising and show that proposed modifications are effective in non-traditional domains.

pdf bib
Assessing Back-Translation as a Corpus Generation Strategy for non-English Tasks: A Study in Reading Comprehension and Word Sense Disambiguation
Fabricio Monsalve | Kervy Rivas Rojas | Marco Antonio Sobrevilla Cabezudo | Arturo Oncevay
Proceedings of the 13th Linguistic Annotation Workshop

Corpora curated by experts have sustained Natural Language Processing mainly in English, but the expensiveness of corpora creation is a barrier for the development in further languages. Thus, we propose a corpus generation strategy that only requires a machine translation system between English and the target language in both directions, where we filter the best translations by computing automatic translation metrics and the task performance score. By studying Reading Comprehension in Spanish and Word Sense Disambiguation in Portuguese, we identified that a more quality-oriented metric has high potential in the corpora selection without degrading the task performance. We conclude that it is possible to systematise the building of quality corpora using machine translation and automatic metrics, besides some prior effort to clean and process the data.

pdf bib
A Continuous Improvement Framework of Machine Translation for Shipibo-Konibo
Héctor Erasmo Gómez Montoya | Kervy Dante Rivas Rojas | Arturo Oncevay
Proceedings of the 2nd Workshop on Technologies for MT of Low Resource Languages

2018

pdf bib
Toward Universal Dependencies for Shipibo-Konibo
Alonso Vasquez | Renzo Ego Aguirre | Candy Angulo | John Miller | Claudia Villanueva | Željko Agić | Roberto Zariquiey | Arturo Oncevay
Proceedings of the Second Workshop on Universal Dependencies (UDW 2018)

We present an initial version of the Universal Dependencies (UD) treebank for Shipibo-Konibo, the first South American, Amazonian, Panoan and Peruvian language with a resource built under UD. We describe the linguistic aspects of how the tagset was defined and the treebank was annotated; in addition we present our specific treatment of linguistic units called clitics. Although the treebank is still under development, it allowed us to perform a typological comparison against Spanish, the predominant language in Peru, and dependency syntax parsing experiments in both monolingual and cross-lingual approaches.

pdf bib
ChAnot: An Intelligent Annotation Tool for Indigenous and Highly Agglutinative Languages in Peru
Rodolfo Mercado-Gonzales | José Pereira-Noriega | Marco Sobrevilla | Arturo Oncevay
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

pdf bib
Corpus Building and Evaluation of Aspect-based Opinion Summaries from Tweets in Spanish
Daniel Peñaloza | Rodrigo López | Juanjosé Tenorio | Héctor Gómez | Arturo Oncevay-Marcos | Marco A. Sobrevilla Cabezudo
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

pdf bib
WordNet-Shp: Towards the Building of a Lexical Database for a Peruvian Minority Language
Diego Maguiño-Valencia | Arturo Oncevay-Marcos | Marco A. Sobrevilla Cabezudo
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

2017

pdf bib
Corpus Creation and Initial SMT Experiments between Spanish and Shipibo-konibo
Ana-Paula Galarreta | Andrés Melgar | Arturo Oncevay
Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017

In this paper, we present the first attempts to develop a machine translation (MT) system between Spanish and Shipibo-konibo (es-shp). There are very few digital texts written in Shipibo-konibo and even less bilingual texts that can be aligned, hence we had to create a parallel corpus using both bilingual and monolingual texts. We will describe how this corpus was made, as well as the process we followed to improve the quality of the sentences used to build a statistical MT model or SMT. The results obtained surpassed the baseline proposed (dictionary based) and made a promising result for further development considering the size of corpus used. Finally, it is expected that this MT system can be reinforced with the use of additional linguistic rules and automatic language processing functions that are being implemented.

pdf bib
Spell-Checking based on Syllabification and Character-level Graphs for a Peruvian Agglutinative Language
Carlo Alva | Arturo Oncevay
Proceedings of the First Workshop on Subword and Character Level Models in NLP

There are several native languages in Peru which are mostly agglutinative. These languages are transmitted from generation to generation mainly in oral form, causing different forms of writing across different communities. For this reason, there are recent efforts to standardize the spelling in the written texts, and it would be beneficial to support these tasks with an automatic tool such as an spell-checker. In this way, this spelling corrector is being developed based on two steps: an automatic rule-based syllabification method and a character-level graph to detect the degree of error in a misspelled word. The experiments were realized on Shipibo-konibo, a highly agglutinative and amazonian language, and the results obtained have been promising in a dataset built for the purpose.

pdf bib
Exploratory Analysis for Ontology Learning from Social Events on Social Media Streaming in Spanish
Enrique Valeriano | Arturo Oncevay-Marcos
Proceedings of Language, Ontology, Terminology and Knowledge Structures Workshop (LOTKS 2017)

Search
Co-authors