Artem Shelmanov


2021

pdf bib
Active Learning for Sequence Tagging with Deep Pre-trained Models and Bayesian Uncertainty Estimates
Artem Shelmanov | Dmitri Puzyrev | Lyubov Kupriyanova | Denis Belyakov | Daniil Larionov | Nikita Khromov | Olga Kozlova | Ekaterina Artemova | Dmitry V. Dylov | Alexander Panchenko
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Annotating training data for sequence tagging of texts is usually very time-consuming. Recent advances in transfer learning for natural language processing in conjunction with active learning open the possibility to significantly reduce the necessary annotation budget. We are the first to thoroughly investigate this powerful combination for the sequence tagging task. We conduct an extensive empirical study of various Bayesian uncertainty estimation methods and Monte Carlo dropout options for deep pre-trained models in the active learning framework and find the best combinations for different types of models. Besides, we also demonstrate that to acquire instances during active learning, a full-size Transformer can be substituted with a distilled version, which yields better computational performance and reduces obstacles for applying deep active learning in practice.

pdf bib
How Certain is Your Transformer?
Artem Shelmanov | Evgenii Tsymbalov | Dmitri Puzyrev | Kirill Fedyanin | Alexander Panchenko | Maxim Panov
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

In this work, we consider the problem of uncertainty estimation for Transformer-based models. We investigate the applicability of uncertainty estimates based on dropout usage at the inference stage (Monte Carlo dropout). The series of experiments on natural language understanding tasks shows that the resulting uncertainty estimates improve the quality of detection of error-prone instances. Special attention is paid to the construction of computationally inexpensive estimates via Monte Carlo dropout and Determinantal Point Processes.

pdf bib
NB-MLM: Efficient Domain Adaptation of Masked Language Models for Sentiment Analysis
Nikolay Arefyev | Dmitrii Kharchev | Artem Shelmanov
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

While Masked Language Models (MLM) are pre-trained on massive datasets, the additional training with the MLM objective on domain or task-specific data before fine-tuning for the final task is known to improve the final performance. This is usually referred to as the domain or task adaptation step. However, unlike the initial pre-training, this step is performed for each domain or task individually and is still rather slow, requiring several GPU days compared to several GPU hours required for the final task fine-tuning. We argue that the standard MLM objective leads to inefficiency when it is used for the adaptation step because it mostly learns to predict the most frequent words, which are not necessarily related to a final task. We propose a technique for more efficient adaptation that focuses on predicting words with large weights of the Naive Bayes classifier trained for the task at hand, which are likely more relevant than the most frequent words. The proposed method provides faster adaptation and better final performance for sentiment analysis compared to the standard approach.

2020

pdf bib
Word Sense Disambiguation for 158 Languages using Word Embeddings Only
Varvara Logacheva | Denis Teslenko | Artem Shelmanov | Steffen Remus | Dmitry Ustalov | Andrey Kutuzov | Ekaterina Artemova | Chris Biemann | Simone Paolo Ponzetto | Alexander Panchenko
Proceedings of the 12th Language Resources and Evaluation Conference

Disambiguation of word senses in context is easy for humans, but is a major challenge for automatic approaches. Sophisticated supervised and knowledge-based models were developed to solve this task. However, (i) the inherent Zipfian distribution of supervised training instances for a given word and/or (ii) the quality of linguistic knowledge representations motivate the development of completely unsupervised and knowledge-free approaches to word sense disambiguation (WSD). They are particularly useful for under-resourced languages which do not have any resources for building either supervised and/or knowledge-based models. In this paper, we present a method that takes as input a standard pre-trained word embedding model and induces a fully-fledged word sense inventory, which can be used for disambiguation in context. We use this method to induce a collection of sense inventories for 158 languages on the basis of the original pre-trained fastText word embeddings by Grave et al., (2018), enabling WSD in these languages. Models and system are available online.

pdf bib
Generating Lexical Representations of Frames using Lexical Substitution
Saba Anwar | Artem Shelmanov | Alexander Panchenko | Chris Biemann
Proceedings of the Probability and Meaning Conference (PaM 2020)

Semantic frames are formal linguistic structures describing situations/actions/events, e.g. Commercial transfer of goods. Each frame provides a set of roles corresponding to the situation participants, e.g. Buyer and Goods, and lexical units (LUs) – words and phrases that can evoke this particular frame in texts, e.g. Sell. The scarcity of annotated resources hinders wider adoption of frame semantics across languages and domains. We investigate a simple yet effective method, lexical substitution with word representation models, to automatically expand a small set of frame-annotated sentences with new words for their respective roles and LUs. We evaluate the expansion quality using FrameNet. Contextualized models demonstrate overall superior performance compared to the non-contextualized ones on roles. However, the latter show comparable performance on the task of LU expansion.

2019

pdf bib
Towards the Data-driven System for Rhetorical Parsing of Russian Texts
Artem Shelmanov | Dina Pisarevskaya | Elena Chistova | Svetlana Toldova | Maria Kobozeva | Ivan Smirnov
Proceedings of the Workshop on Discourse Relation Parsing and Treebanking 2019

Results of the first experimental evaluation of machine learning models trained on Ru-RSTreebank – first Russian corpus annotated within RST framework – are presented. Various lexical, quantitative, morphological, and semantic features were used. In rhetorical relation classification, ensemble of CatBoost model with selected features and a linear SVM model provides the best score (macro F1 = 54.67 ± 0.38). We discover that most of the important features for rhetorical relation classification are related to discourse connectives derived from the connectives lexicon for Russian and from other sources.

pdf bib
A Dataset for Noun Compositionality Detection for a Slavic Language
Dmitry Puzyrev | Artem Shelmanov | Alexander Panchenko | Ekaterina Artemova
Proceedings of the 7th Workshop on Balto-Slavic Natural Language Processing

This paper presents the first gold-standard resource for Russian annotated with compositionality information of noun compounds. The compound phrases are collected from the Universal Dependency treebanks according to part of speech patterns, such as ADJ+NOUN or NOUN+NOUN, using the gold-standard annotations. Each compound phrase is annotated by two experts and a moderator according to the following schema: the phrase can be either compositional, non-compositional, or ambiguous (i.e., depending on the context it can be interpreted both as compositional or non-compositional). We conduct an experimental evaluation of models and methods for predicting compositionality of noun compounds in unsupervised and supervised setups. We show that methods from previous work evaluated on the proposed Russian-language resource achieve the performance comparable with results on English corpora.

pdf bib
Semantic Role Labeling with Pretrained Language Models for Known and Unknown Predicates
Daniil Larionov | Artem Shelmanov | Elena Chistova | Ivan Smirnov
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)

We build the first full pipeline for semantic role labelling of Russian texts. The pipeline implements predicate identification, argument extraction, argument classification (labeling), and global scoring via integer linear programming. We train supervised neural network models for argument classification using Russian semantically annotated corpus – FrameBank. However, we note that this resource provides annotations only to a very limited set of predicates. We combat the problem of annotation scarcity by introducing two models that rely on different sets of features: one for “known” predicates that are present in the training set and one for “unknown” predicates that are not. We show that the model for “unknown” predicates can alleviate the lack of annotation by using pretrained embeddings. We perform experiments with various types of embeddings including the ones generated by deep pretrained language models: word2vec, FastText, ELMo, BERT, and show that embeddings generated by deep pretrained language models are superior to classical shallow embeddings for argument classification of both “known” and “unknown” predicates.