Arpit Mittal


2021

pdf bib
Proceedings of the Fourth Workshop on Fact Extraction and VERification (FEVER)
Rami Aly | Christos Christodoulopoulos | Oana Cocarascu | Zhijiang Guo | Arpit Mittal | Michael Schlichtkrull | James Thorne | Andreas Vlachos
Proceedings of the Fourth Workshop on Fact Extraction and VERification (FEVER)

pdf bib
The Fact Extraction and VERification Over Unstructured and Structured information (FEVEROUS) Shared Task
Rami Aly | Zhijiang Guo | Michael Sejr Schlichtkrull | James Thorne | Andreas Vlachos | Christos Christodoulopoulos | Oana Cocarascu | Arpit Mittal
Proceedings of the Fourth Workshop on Fact Extraction and VERification (FEVER)

The Fact Extraction and VERification Over Unstructured and Structured information (FEVEROUS) shared task, asks participating systems to determine whether human-authored claims are Supported or Refuted based on evidence retrieved from Wikipedia (or NotEnoughInfo if the claim cannot be verified). Compared to the FEVER 2018 shared task, the main challenge is the addition of structured data (tables and lists) as a source of evidence. The claims in the FEVEROUS dataset can be verified using only structured evidence, only unstructured evidence, or a mixture of both. Submissions are evaluated using the FEVEROUS score that combines label accuracy and evidence retrieval. Unlike FEVER 2018, FEVEROUS requires partial evidence to be returned for NotEnoughInfo claims, and the claims are longer and thus more complex. The shared task received 13 entries, six of which were able to beat the baseline system. The winning team was “Bust a move!”, achieving a FEVEROUS score of 27% (+9% compared to the baseline). In this paper we describe the shared task, present the full results and highlight commonalities and innovations among the participating systems.

2020

pdf bib
Debiasing knowledge graph embeddings
Joseph Fisher | Arpit Mittal | Dave Palfrey | Christos Christodoulopoulos
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

It has been shown that knowledge graph embeddings encode potentially harmful social biases, such as the information that women are more likely to be nurses, and men more likely to be bankers. As graph embeddings begin to be used more widely in NLP pipelines, there is a need to develop training methods which remove such biases. Previous approaches to this problem both significantly increase the training time, by a factor of eight or more, and decrease the accuracy of the model substantially. We present a novel approach, in which all embeddings are trained to be neutral to sensitive attributes such as gender by default using an adversarial loss. We then add sensitive attributes back on in whitelisted cases. Training time only marginally increases over a baseline model, and the debiased embeddings perform almost as accurately in the triple prediction task as their non-debiased counterparts.

pdf bib
Proceedings of the Third Workshop on Fact Extraction and VERification (FEVER)
Christos Christodoulopoulos | James Thorne | Andreas Vlachos | Oana Cocarascu | Arpit Mittal
Proceedings of the Third Workshop on Fact Extraction and VERification (FEVER)

2019

pdf bib
Generating Token-Level Explanations for Natural Language Inference
James Thorne | Andreas Vlachos | Christos Christodoulopoulos | Arpit Mittal
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

The task of Natural Language Inference (NLI) is widely modeled as supervised sentence pair classification. While there has been a lot of work recently on generating explanations of the predictions of classifiers on a single piece of text, there have been no attempts to generate explanations of classifiers operating on pairs of sentences. In this paper, we show that it is possible to generate token-level explanations for NLI without the need for training data explicitly annotated for this purpose. We use a simple LSTM architecture and evaluate both LIME and Anchor explanations for this task. We compare these to a Multiple Instance Learning (MIL) method that uses thresholded attention make token-level predictions. The approach we present in this paper is a novel extension of zero-shot single-sentence tagging to sentence pairs for NLI. We conduct our experiments on the well-studied SNLI dataset that was recently augmented with manually annotation of the tokens that explain the entailment relation. We find that our white-box MIL-based method, while orders of magnitude faster, does not reach the same accuracy as the black-box methods.

pdf bib
Learning When Not to Answer: a Ternary Reward Structure for Reinforcement Learning Based Question Answering
Fréderic Godin | Anjishnu Kumar | Arpit Mittal
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Industry Papers)

In this paper, we investigate the challenges of using reinforcement learning agents for question-answering over knowledge graphs for real-world applications. We examine the performance metrics used by state-of-the-art systems and determine that they are inadequate for such settings. More specifically, they do not evaluate the systems correctly for situations when there is no answer available and thus agents optimized for these metrics are poor at modeling confidence. We introduce a simple new performance metric for evaluating question-answering agents that is more representative of practical usage conditions, and optimize for this metric by extending the binary reward structure used in prior work to a ternary reward structure which also rewards an agent for not answering a question rather than giving an incorrect answer. We show that this can drastically improve the precision of answered questions while only not answering a limited number of previously correctly answered questions. Employing a supervised learning strategy using depth-first-search paths to bootstrap the reinforcement learning algorithm further improves performance.

pdf bib
Evaluating adversarial attacks against multiple fact verification systems
James Thorne | Andreas Vlachos | Christos Christodoulopoulos | Arpit Mittal
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Automated fact verification has been progressing owing to advancements in modeling and availability of large datasets. Due to the nature of the task, it is critical to understand the vulnerabilities of these systems against adversarial instances designed to make them predict incorrectly. We introduce two novel scoring metrics, attack potency and system resilience which take into account the correctness of the adversarial instances, an aspect often ignored in adversarial evaluations. We consider six fact verification systems from the recent Fact Extraction and VERification (FEVER) challenge: the four best-scoring ones and two baselines. We evaluate adversarial instances generated by a recently proposed state-of-the-art method, a paraphrasing method, and rule-based attacks devised for fact verification. We find that our rule-based attacks have higher potency, and that while the rankings among the top systems changed, they exhibited higher resilience than the baselines.

pdf bib
Using Pairwise Occurrence Information to Improve Knowledge Graph Completion on Large-Scale Datasets
Esma Balkir | Masha Naslidnyk | Dave Palfrey | Arpit Mittal
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Bilinear models such as DistMult and ComplEx are effective methods for knowledge graph (KG) completion. However, they require large batch sizes, which becomes a performance bottleneck when training on large scale datasets due to memory constraints. In this paper we use occurrences of entity-relation pairs in the dataset to construct a joint learning model and to increase the quality of sampled negatives during training. We show on three standard datasets that when these two techniques are combined, they give a significant improvement in performance, especially when the batch size and the number of generated negative examples are low relative to the size of the dataset. We then apply our techniques to a dataset containing 2 million entities and demonstrate that our model outperforms the baseline by 2.8% absolute on hits@1.

pdf bib
Large Scale Question Paraphrase Retrieval with Smoothed Deep Metric Learning
Daniele Bonadiman | Anjishnu Kumar | Arpit Mittal
Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)

The goal of a Question Paraphrase Retrieval (QPR) system is to retrieve equivalent questions that result in the same answer as the original question. Such a system can be used to understand and answer rare and noisy reformulations of common questions by mapping them to a set of canonical forms. This has large-scale applications for community Question Answering (cQA) and open-domain spoken language question answering systems. In this paper we describe a new QPR system implemented as a Neural Information Retrieval (NIR) system consisting of a neural network sentence encoder and an approximate k-Nearest Neighbour index for efficient vector retrieval. We also describe our mechanism to generate an annotated dataset for question paraphrase retrieval experiments automatically from question-answer logs via distant supervision. We show that the standard loss function in NIR, triplet loss, does not perform well with noisy labels. We propose smoothed deep metric loss (SDML) and with our experiments on two QPR datasets we show that it significantly outperforms triplet loss in the noisy label setting.

pdf bib
Proceedings of the Second Workshop on Fact Extraction and VERification (FEVER)
James Thorne | Andreas Vlachos | Oana Cocarascu | Christos Christodoulopoulos | Arpit Mittal
Proceedings of the Second Workshop on Fact Extraction and VERification (FEVER)

pdf bib
The FEVER2.0 Shared Task
James Thorne | Andreas Vlachos | Oana Cocarascu | Christos Christodoulopoulos | Arpit Mittal
Proceedings of the Second Workshop on Fact Extraction and VERification (FEVER)

We present the results of the second Fact Extraction and VERification (FEVER2.0) Shared Task. The task challenged participants to both build systems to verify factoid claims using evidence retrieved from Wikipedia and to generate adversarial attacks against other participant’s systems. The shared task had three phases: building, breaking and fixing. There were 8 systems in the builder’s round, three of which were new qualifying submissions for this shared task, and 5 adversaries generated instances designed to induce classification errors and one builder submitted a fixed system which had higher FEVER score and resilience than their first submission. All but one newly submitted systems attained FEVER scores higher than the best performing system from the first shared task and under adversarial evaluation, all systems exhibited losses in FEVER score. There was a great variety in adversarial attack types as well as the techniques used to generate the attacks, In this paper, we present the results of the shared task and a summary of the systems, highlighting commonalities and innovations among participating systems.

2018

pdf bib
FEVER: a Large-scale Dataset for Fact Extraction and VERification
James Thorne | Andreas Vlachos | Christos Christodoulopoulos | Arpit Mittal
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

In this paper we introduce a new publicly available dataset for verification against textual sources, FEVER: Fact Extraction and VERification. It consists of 185,445 claims generated by altering sentences extracted from Wikipedia and subsequently verified without knowledge of the sentence they were derived from. The claims are classified as Supported, Refuted or NotEnoughInfo by annotators achieving 0.6841 in Fleiss kappa. For the first two classes, the annotators also recorded the sentence(s) forming the necessary evidence for their judgment. To characterize the challenge of the dataset presented, we develop a pipeline approach and compare it to suitably designed oracles. The best accuracy we achieve on labeling a claim accompanied by the correct evidence is 31.87%, while if we ignore the evidence we achieve 50.91%. Thus we believe that FEVER is a challenging testbed that will help stimulate progress on claim verification against textual sources.

pdf bib
Demand-Weighted Completeness Prediction for a Knowledge Base
Andrew Hopkinson | Amit Gurdasani | Dave Palfrey | Arpit Mittal
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 3 (Industry Papers)

In this paper we introduce the notion of Demand-Weighted Completeness, allowing estimation of the completeness of a knowledge base with respect to how it is used. Defining an entity by its classes, we employ usage data to predict the distribution over relations for that entity. For example, instances of person in a knowledge base may require a birth date, name and nationality to be considered complete. These predicted relation distributions enable detection of important gaps in the knowledge base, and define the required facts for unseen entities. Such characterisation of the knowledge base can also quantify how usage and completeness change over time. We demonstrate a method to measure Demand-Weighted Completeness, and show that a simple neural network model performs well at this prediction task.

pdf bib
Proceedings of the First Workshop on Fact Extraction and VERification (FEVER)
James Thorne | Andreas Vlachos | Oana Cocarascu | Christos Christodoulopoulos | Arpit Mittal
Proceedings of the First Workshop on Fact Extraction and VERification (FEVER)

pdf bib
The Fact Extraction and VERification (FEVER) Shared Task
James Thorne | Andreas Vlachos | Oana Cocarascu | Christos Christodoulopoulos | Arpit Mittal
Proceedings of the First Workshop on Fact Extraction and VERification (FEVER)

We present the results of the first Fact Extraction and VERification (FEVER) Shared Task. The task challenged participants to classify whether human-written factoid claims could be SUPPORTED or REFUTED using evidence retrieved from Wikipedia. We received entries from 23 competing teams, 19 of which scored higher than the previously published baseline. The best performing system achieved a FEVER score of 64.21%. In this paper, we present the results of the shared task and a summary of the systems, highlighting commonalities and innovations among participating systems.

pdf bib
Simple Large-scale Relation Extraction from Unstructured Text
Christos Christodoulopoulos | Arpit Mittal
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)